Twitter Spam Detection Using Naive Bayes Classifier

被引:4
|
作者
Santoshi, K. Ushasree [1 ]
Bhavya, S. Sree [1 ]
Sri, Y. Bhavya [1 ]
Venkateswarlu, B. [2 ]
机构
[1] Koneru Lakshmaiah Educ Fdn, Dept CSE, Vaddeswaram, Andhra Pradesh, India
[2] Koneru Lakshmaiah Educ Educ, Dept CSE, Vaddeswaram, Andhra Pradesh, India
关键词
Malicious Tweets; filtering; ham and spam; deep learning; SVM; naive Bayes classifier;
D O I
10.1109/ICICT50816.2021.9358579
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Twitter is the well liked social media platform that has over 300 million monthly users which post 500 million tweets per day. This is the main reason why spammers use Twitter for their spiteful doings such as spreading malignant software that steals the user personal information and tweets containing fake or faulty URLs, assertively follow or un-follow users and trending fake tweets to get users attention, spread pornography advertisements. In recent years twitter has reportedly collected the data of active users and analyzed their actions, the report clearly shows that over 32 million users have interacted with server for casual information in daily basis. Hence, identifying and filtering the malicious tweets or trends that are harmful or unwanted for users is very important in current social world. This paper discusses about the ways to analyze the tweets and classify them into spam and ham based on the words involved in tweets. Although there are various machine learning and deep learning methods to classify and detect spam tweets like SVM, clustering methods and binary detection models that are used Naive Bayes classifier. Recently, twitter users are experiencing data stealing malware by accessing or visiting unnecessary spam messages or tweets. It has to be considered seriously since many people are losing money or personal information. Besides data stealing malware, fake trends also been a threat. It has to be controlled. Spammers are likely to interact with more people because of the auto-follow option.
引用
收藏
页码:773 / 777
页数:5
相关论文
共 50 条
  • [31] Better Naive Bayes classification for high-precision spam detection
    Song, Yang
    Kolcz, Aleksander
    Giles, C. Lee
    SOFTWARE-PRACTICE & EXPERIENCE, 2009, 39 (11): : 1003 - 1024
  • [32] Classification of Indonesian quote on Twitter using Naive Bayes
    Rachmadany, A.
    Pranoto, Y. M.
    Gunawan
    Multazam, M. T.
    Nandiyanto, A. B. D.
    Abdullah, A. G.
    Widiaty, I.
    2ND ANNUAL APPLIED SCIENCE AND ENGINEERING CONFERENCE (AASEC 2017), 2018, 288
  • [33] Combining Naive Bayes and Adjective Analysis for Sentiment Detection on Twitter
    Mertiya, Mohit
    Singh, Ashima
    2016 INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT), VOL 2, 2016, : 500 - 505
  • [34] Sentiment Analysis using Naive Bayes and Complement Naive Bayes Classifier Algorithms on Hadoop Framework
    Seref, Berna
    Bostanci, Erkan
    2018 2ND INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT), 2018, : 555 - 561
  • [35] Naive Bayes text classifier
    Zhang, Haiyi
    Li, Di
    GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, 2007, : 708 - 711
  • [36] Network Disruption Prediction Using Naive Bayes Classifier
    Oktaviana, Shinta
    Ermis, Iklima
    Anasanti, Mila Desi
    Hammad, Jehad
    2019 2ND INTERNATIONAL CONFERENCE OF COMPUTER AND INFORMATICS ENGINEERING (IC2IE 2019): ARTIFICIAL INTELLIGENCE ROLES IN INDUSTRIAL REVOLUTION 4.0, 2019, : 159 - 163
  • [37] Repairing Broken Links Using Naive Bayes Classifier
    Khan, Faheem Nawaz
    Ali, Adnan
    Hussain, Imtiaz
    Sarwar, Nadeem
    Rafique, Hamaad
    INTELLIGENT TECHNOLOGIES AND APPLICATIONS, INTAP 2018, 2019, 932 : 461 - 472
  • [38] Prediction of Slope Stability using Naive Bayes Classifier
    Feng, Xianda
    Li, Shuchen
    Yuan, Chao
    Zeng, Peng
    Sun, Yang
    KSCE JOURNAL OF CIVIL ENGINEERING, 2018, 22 (03) : 941 - 950
  • [39] Improving Naive Bayes classifier using conditional probabilities
    Taheri, Sona
    Mammadov, Musa
    Bagirov, Adil M.
    Conferences in Research and Practice in Information Technology Series, 2010, 121 : 63 - 68
  • [40] Optimizing MapReduce Partitioner Using Naive Bayes Classifier
    Chen, Lei
    Lu, Wei
    Wang, Liqiang
    Bao, Ergude
    Xing, Weiwei
    Yang, Yong
    Yuan, Victor
    2017 IEEE 15TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 15TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 3RD INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS(DASC/PICOM/DATACOM/CYBERSCI, 2017, : 812 - 819