Splitting methods for non-autonomous linear systems

被引:10
|
作者
Blanes, Sergio
Casas, Fernando [1 ]
Murua, Ander
机构
[1] Univ Politecn Valencia, Inst Matemat Multidiciplinar, E-46022 Valencia, Spain
[2] Univ Jaume 1, Dept Math, E-12071 Castellon de La Plana, Spain
[3] UPV, EHU, Informat Fac, Donostia San Sebastian, Spain
关键词
splitting methods; non-autonomous systems; Magnus expansion;
D O I
10.1080/00207160701458567
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present splitting methods for numerically solving a certain class of explicitly time-dependent linear differential equations. Starting from an efficient method for the autonomous case and making use of the formal solution obtained with the Magnus expansion, we show how to get the order conditions for the non-autonomous case. We also build a family of sixth-order integrators whose performance is clearly superior to previous splitting methods on several numerical examples.
引用
收藏
页码:713 / 727
页数:15
相关论文
共 50 条
  • [21] Linear instability for periodic orbits of non-autonomous Lagrangian systems
    Portaluri, Alessandro
    Wu, Li
    Yang, Ran
    NONLINEARITY, 2021, 34 (01) : 237 - 272
  • [22] EQUIVALENT LINEAR-MODELS FOR NONLINEAR NON-AUTONOMOUS SYSTEMS
    DASARATHY, BV
    JOURNAL OF SOUND AND VIBRATION, 1975, 42 (04) : 447 - 452
  • [23] High-order splitting methods for separable non-autonomous parabolic equations
    Seydaoglu, M.
    Blanes, S.
    APPLIED NUMERICAL MATHEMATICS, 2014, 84 : 22 - 32
  • [24] Operator splitting for non-autonomous evolution equations
    Batkai, Andras
    Csomos, Petra
    Farkas, Balint
    Nickel, Gregor
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (07) : 2163 - 2190
  • [25] A numerical method for solving linear non-autonomous systems based on linear programming
    Mehne, H. H.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 178 (02) : 287 - 294
  • [26] OBSERVABILITY FOR NON-AUTONOMOUS SYSTEMS
    Bombach, Clemens
    Gabel, Fabian
    Seifert, Christian
    Tautenhahn, Martin
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (01) : 315 - 341
  • [27] On non-autonomous dynamical systems
    Anzaldo-Meneses, A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (04)
  • [28] NON-AUTONOMOUS DYNAMICAL SYSTEMS
    Carvalho, Alexandre N.
    Langa, Jose A.
    Robinson, James C.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (03): : 703 - 747
  • [29] The stability of the equilibrium positions of non-linear non-autonomous mechanical systems
    Aleksandrov, A.Yu.
    1600, Elsevier Ltd, Langford Lane, Kidlington, Oxford, OX5 1GB, United Kingdom (71):
  • [30] Robust stabilization of non-linear non-autonomous control systems with periodic linear approximation
    Slyn'ko, V., I
    Tunc, Cemil
    Bivziuk, V. O.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2021, 38 (01) : 125 - 142