A fast method for the generation of boundary conditions for thermal autoclave simulation

被引:30
|
作者
Weber, Tobias A. [1 ]
Arent, Jan-Christoph [1 ]
Muench, Lukas [1 ]
Duhovic, Miro [2 ]
Balvers, Johannes M. [1 ]
机构
[1] Airbus Helicopters Deutschland GmbH, Ind Str 4, D-86609 Donauworth, Germany
[2] Inst Verbundwerkstoffe GmbH, Erwin Schrodinger Str,Gebaude 58, D-67663 Kaiserslautern, Germany
关键词
Finite Element Analysis (FEA); Thermal analysis; Autoclave; Tooling; THICK THERMOSETTING COMPOSITES;
D O I
10.1016/j.compositesa.2016.05.036
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Manufacturing process simulation enables the evaluation and improvement of autoclave mold concepts early in the design phase. To achieve a high part quality at low cycle times, the thermal behavior of the autoclave mold can be investigated by means of simulations. Most challenging for such a simulation is the generation of necessary boundary conditions. Heat-up and temperature distribution in an autoclave mold are governed by flow phenomena, tooling material and shape, position within the autoclave, and the chosen autoclave cycle. This paper identifies and summarizes the most important factors influencing mold heat-up and how they can be introduced into a thermal simulation. Thermal measurements are used to quantify the impact of the various parameters. Finally, the gained knowledge is applied to develop a semi-empirical approach for boundary condition estimation that enables a simple and fast thermal simulation of the autoclave curing process with reasonably high accuracy for tooling optimization. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:216 / 225
页数:10
相关论文
共 50 条
  • [41] Fast multipole boundary element method for the simulation of acoustic-structure interaction
    Gaul, L.
    Fischer, M.
    FLUID STRUCTURE INTERACTION AND MOVING BOUNDARY PROBLEMS IV, 2007, 92 : 313 - +
  • [42] Simulation of thermal transfer using the immersed boundary method and adaptive mesh
    Melo, R. R. S.
    Kinoshita, D.
    Villar, M. M.
    Serfaty, R.
    Silyeira-Neto, A.
    TURBULENCE HEAT AND MASS TRANSFER 9 (THMT-18), 2018, : 953 - 962
  • [43] Fast convolution for nonreflecting boundary conditions
    Lubich, C
    Schädle, A
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (01): : 161 - 182
  • [44] TILTS: A Fast Architectural-Level Transient Thermal Simulation Method
    Han, Yongkui
    Koren, Israel
    Krishna, C. M.
    JOURNAL OF LOW POWER ELECTRONICS, 2007, 3 (01) : 13 - 21
  • [45] Numerical Study on Entropy Generation in Thermal Convection with Differentially Discrete Heat Boundary Conditions
    Wang, Zhengdao
    Wei, Yikun
    Qian, Yuehong
    ENTROPY, 2018, 20 (05)
  • [46] Analysis of Entropy Generation for Mixed Convection in a Square Cavity for Various Thermal Boundary Conditions
    Roy, Monisha
    Basak, Tanmay
    Roy, S.
    Pop, I.
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2015, 68 (01) : 44 - 74
  • [47] ENTROPY GENERATION DURING NATURAL CONVECTION IN A POROUS CAVITY: EFFECT OF THERMAL BOUNDARY CONDITIONS
    Basak, Tanmay
    Kaluri, Ram Satish
    Balakrishnan, A. R.
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2012, 62 (04) : 336 - 364
  • [48] Electromagnetic Transient Decoupling of Photovoltaic Power Generation Units and Fast Simulation Method
    Yao S.
    Zhang C.
    Liu G.
    Ma J.
    Wang Y.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2022, 46 (21): : 170 - 178
  • [49] THE SAULYEV METHOD OF DIGITAL-SIMULATION UNDER DERIVATIVE BOUNDARY-CONDITIONS
    BRITZ, D
    DASILVA, BM
    AVACA, LA
    GONZALEZ, ER
    ANALYTICA CHIMICA ACTA, 1990, 239 (01) : 87 - 93
  • [50] Application of inverse method to estimation of boundary conditions during investment casting simulation
    Jin, Haipeng
    Li, Jiarong
    Pan, Dong
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2009, 22 (06) : 429 - 434