Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review)

被引:7
|
作者
Kontopodis, Eleftherios E. [1 ,2 ]
Papadaki, Efrosini [1 ,2 ]
Trivzakis, Eleftherios [1 ,2 ]
Maris, Thomas G. [1 ,2 ]
Simos, Panagiotis [1 ,3 ]
Papadakis, Georgios Z. [1 ,2 ]
Tsatsakis, Aristidis [4 ]
Spandidos, Demetrios A. [5 ]
Karantanas, Apostolos [1 ,2 ]
Marias, Kostas [1 ,6 ]
机构
[1] Fdn Res & Technol Hellas, Inst Comp Sci, Computat BioMed Lab, 100 Nikolaou Plastira St, Iraklion 70013, Greece
[2] Univ Crete, Dept Radiol, Med Sch, Iraklion 70013, Greece
[3] Univ Crete, Med Sch, Dept Psychiat & Behav Sci, Iraklion 70013, Greece
[4] Univ Crete, Ctr Toxicol Sci & Res, Fac Med, Iraklion 71003, Greece
[5] Univ Crete, Med Sch, Lab Clin Virol, Iraklion 71003, Greece
[6] Hellenic Mediterranean Univ, Dept Elect & Comp Engn, Iraklion 71410, Greece
关键词
magnetic resonance imaging; diagnosis; multiple sclerosis; deep learning; clinical isolated syndrome; LESION SEGMENTATION; WHITE-MATTER; MRI; DIAGNOSIS; REVISIONS; ATROPHY; MYELIN;
D O I
10.3892/etm.2021.10583
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Computer-aided diagnosis systems aim to assist clinicians in the early identification of abnormal signs in order to optimize the interpretation of medical images and increase diagnostic precision. Multiple sclerosis (MS) and clinically isolated syndrome (CIS) are chronic inflammatory, demyelinating diseases affecting the central nervous system. Recent advances in deep learning (DL) techniques have led to novel computational paradigms in MS and CIS imaging designed for automatic segmentation and detection of areas of interest and automatic classification of anatomic structures, as well as optimization of neuroimaging protocols. To this end, there are several publications presenting artificial intelligence-based predictive models aiming to increase diagnostic accuracy and to facilitate optimal clinical management in patients diagnosed with MS and/or CIS. The current study presents a thorough review covering DL techniques that have been applied in MS and CIS during recent years, shedding light on their current advances and limitations.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging
    Zhang, Yunyan
    Hong, Daphne
    McClement, Daniel
    Oladosu, Olayinka
    Pridham, Glen
    Slaney, Garth
    JOURNAL OF NEUROSCIENCE METHODS, 2021, 353
  • [42] Magnetic resonance imaging as surrogate for clinical endpoints in multiple sclerosis: data on novel oral drugs
    Sormani, M. P.
    Bonzano, L.
    Roccatagliata, L.
    De Stefano, N.
    MULTIPLE SCLEROSIS JOURNAL, 2011, 17 (05) : 630 - 633
  • [43] Diffusion tensor magnetic resonance imaging in multiple sclerosis patients
    Mohamed, Feroze B.
    Faro, Scott H.
    Patel, Sunil
    Gonzalez, Carlos
    Hum, Barbara
    Schwartzman, Robert
    JOURNAL OF NEUROVIROLOGY, 2006, 12 : 54 - 54
  • [44] Magnetic resonance perfusion imaging in patients with multiple sclerosis (MS)
    Papadaki, E
    Papanikolaou, N
    Karampekios, S
    Spilioti, M
    Maris, T
    Gourtsoyiannis, NC
    RADIOLOGY, 2002, 225 : 430 - 430
  • [45] Association Between Clinical Conversion to Multiple Sclerosis in Radiologically Isolated Syndrome and Magnetic Resonance Imaging, Cerebrospinal Fluid, and Visual Evoked Potential
    Lebrun, Christine
    Bensa, Caroline
    Debouverie, Marc
    Wiertlevski, Sandrine
    Brassat, David
    de Seze, Jerome
    Rumbach, Lucien
    Pelletier, Jean
    Labauge, Pierre
    Brochet, Bruno
    Tourbah, Ayman
    Clavelou, Pierre
    ARCHIVES OF NEUROLOGY, 2009, 66 (07) : 841 - 846
  • [46] Recommendations for using and interpreting magnetic resonance imaging in multiple sclerosis
    Rovira, A.
    Tintore, M.
    Alvarez-Cermeno, J. C.
    Izquierdo, G.
    Prieto, J. M.
    NEUROLOGIA, 2010, 25 (04): : 248 - 265
  • [47] Magnetic resonance imaging detection of deep gray matter iron deposition in multiple sclerosis: A systematic review
    De Lury, Amy D.
    Bisulca, Joseph A.
    Lee, Jimmy S.
    Altaf, Muhammad D.
    Coyle, Patricia K.
    Duong, Tim Q.
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2023, 453
  • [48] Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging
    Danelakis, Antonios
    Theoharis, Theoharis
    Verganelakis, Dimitrios A.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2018, 70 : 83 - 100
  • [49] MAGNETIC-RESONANCE IMAGING AND OTHER TECHNIQUES IN THE DIAGNOSIS OF MULTIPLE-SCLEROSIS
    KIRSHNER, HS
    TSAI, SI
    RUNGE, VM
    PRICE, AC
    ARCHIVES OF NEUROLOGY, 1985, 42 (09) : 859 - 863
  • [50] Pediatric Multiple Sclerosis: Pathobiological, Clinical, and Magnetic Resonance Imaging Features
    Verhey, Leonard H.
    Shroff, Manohar
    Banwell, Brenda
    NEUROIMAGING CLINICS OF NORTH AMERICA, 2013, 23 (02) : 227 - +