Raman spectroscopic study of Leptospiral Glycolipoprotein

被引:0
|
作者
Bao, PD [1 ]
Bao, L [1 ]
Huang, TQ [1 ]
Liu, XM [1 ]
机构
[1] Sichuan Univ, Dept Phys, Chengdu 610064, Peoples R China
关键词
laser Raman Spectroscopy;
D O I
10.1117/12.306093
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The Raman scattering spectra of two different samples of Leptospiral Glycoipoprotein (GLP--1 and GLP--2) which have different toxic effects have been obtained and investigated. Leptospirosis is one of the most harmful zoonosis. It is a serious public health issue in some area of Sichuan province. The two samples offer different structural informations of GLP molecules,it would be important to find the difference in contents,structures and the amino acid side--chains environment of the molecules between the two samples of GLP for understanding the different toxic effects. The intense Am I at 1651cm(-1) and weak Am III at 1283cm(-1) show that GLP--1 has a predominanty alpha-helix secondary structure. The intense Am I at 1674cm(-1) and intense Am III at 1246cm(-1) show that the conformation of GLP--2 has a high content of beta--sheet and a low content of random--coil secondary structure. Strong Raman scattering occurs in the range 920 similar to 980 cm(-1),belong to the C--COO- vibration and the stretching of the peptide backbone. The molecules of GLP--1 has trans--gauche--trans configuration of the C-S-S-C-C linkage and the molecules of GLP--2 has trans--gauche--gauche configuration of the C-C-S-S-C-C linkage. The intensity ratio of the two tyrosine lines at 830cm(-1) and 850cm(-1) is 1.1 (GLP--1) and 1.23 (GLP--2),indicate their tyrosine reduses environment respectively. Other side--chain environment in the tyro samples were discussed.
引用
收藏
页码:267 / 272
页数:6
相关论文
共 50 条
  • [21] Raman spectroscopic study of bacterial endospores
    Joke De Gelder
    Patsy Scheldeman
    Karen Leus
    Marc Heyndrickx
    Peter Vandenabeele
    Luc Moens
    Paul De Vos
    Analytical and Bioanalytical Chemistry, 2007, 389 : 2143 - 2151
  • [22] A Raman spectroscopic study of humite minerals
    Frost, Ray L.
    Palmer, Sara J.
    Bouzaid, Jocelyn M.
    Reddy, B. Jagannadha
    JOURNAL OF RAMAN SPECTROSCOPY, 2007, 38 (01) : 68 - 77
  • [23] Raman spectroscopic study of silicon nanopowders
    Scholz, SM
    Dutta, J
    Hofmann, H
    Hofmeister, H
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 1997, 13 (04) : 327 - 332
  • [24] Intercalation of Halloysite: A Raman Spectroscopic Study
    Ray L. Frost
    Janos Kristof
    Clays and Clay Minerals, 1997, 45 : 551 - 563
  • [25] Raman spectroscopic study of rice globulin
    Ellepola, SW
    Choi, SM
    Phillips, DL
    Ma, CY
    JOURNAL OF CEREAL SCIENCE, 2006, 43 (01) : 85 - 93
  • [26] Raman spectroscopic study of barium fluorapatite
    Bonner, CE
    Chess, CC
    Meegoda, C
    Stefanos, S
    Loutts, GB
    Miller, GE
    LASER MATERIAL CRYSTAL GROWTH AND NONLINEAR MATERIALS AND DEVICES, 1999, 3610 : 204 - 214
  • [27] RAMAN SPECTROSCOPIC STUDY OF FERROELECTRIC TRIGLYCINE SULFATE
    MILLER, SA
    RAST, HE
    CASPERS, HH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1969, 14 (08): : 834 - &
  • [28] A Raman spectroscopic study of Fe–Mg olivines
    B. A. Kolesov
    C. A. Geiger
    Physics and Chemistry of Minerals, 2004, 31 : 142 - 154
  • [29] Raman spectroscopic study of deamidated food proteins
    Wong, Hing-Wan
    Choi, Siu-Mei
    Phillips, David Lee
    Ma, Ching-Yung
    FOOD CHEMISTRY, 2009, 113 (02) : 363 - 370
  • [30] A Raman Spectroscopic Study of Thymoquinone Antitumor Action
    Vcherashniaya, A. V.
    Martinovich, I. V.
    Martinovich, G. G.
    Shadyro, O. I.
    Cherenkevich, S. N.
    JOURNAL OF APPLIED SPECTROSCOPY, 2020, 87 (03) : 515 - 519