CONVERGENT FINITE ELEMENT DISCRETIZATION OF THE MULTI-FLUID NONSTATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS EQUATIONS

被引:0
|
作者
Banas, Lubomir [1 ,2 ]
Prohl, Andreas [3 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
关键词
APPROXIMATION; STATIONARY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a convergent implicit stabilized finite element discretization of the nonstationary incompressible magnetohydrodynamics equations with variable density, viscosity, and electric conductivity. The discretization satisfies a discrete energy law, and a discrete maximum principle for the positive density, and iterates converge to weak solutions of the limiting problem for vanishing discretization parameters. A simple fixed point scheme, together with an appropriate stopping criterion is proposed, which decouples the computation of density, velocity, and magnetic field, and inherits the above properties, provided a mild mesh constraint holds. Computational studies are provided.
引用
收藏
页码:1957 / 1999
页数:43
相关论文
共 50 条
  • [21] Finite element solutions of axisymmetric Euler equations for an incompressible and inviscid fluid
    Saiac, Jacques-Herve
    International Journal for Numerical Methods in Fluids, 1990, 10 (02): : 141 - 160
  • [22] The capturing of free surfaces in incompressible multi-fluid flows
    Pan, D
    Chang, CH
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2000, 33 (02) : 203 - 222
  • [23] Local and parallel finite element algorithm for stationary incompressible magnetohydrodynamics
    Zhang, Yuhong
    Hou, Yanren
    Shan, Li
    Dong, Xiaojing
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (05) : 1513 - 1539
  • [24] Adaptive discretization of stationary and incompressible Navier-Stokes equations by stabilized finite element methods
    Berrone, S
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (34) : 4435 - 4455
  • [25] New Analysis of Mixed Finite Element Methods for Incompressible Magnetohydrodynamics
    Huang, Yuchen
    Qiu, Weifeng
    Sun, Weiwei
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 95 (03)
  • [26] NONCONFORMING MIXED FINITE ELEMENT METHODS FOR STATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS
    Shi, Dongyang
    Yu, Zhiyun
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (04) : 904 - 919
  • [27] New Analysis of Mixed Finite Element Methods for Incompressible Magnetohydrodynamics
    Yuchen Huang
    Weifeng Qiu
    Weiwei Sun
    Journal of Scientific Computing, 2023, 95
  • [28] Streamline Diffusion Finite Element Method for Stationary Incompressible Magnetohydrodynamics
    Zhang, Guo-Dong
    He, Yinnian
    Zhang, Yan
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (06) : 1877 - 1901
  • [29] On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics
    Badia, Santiago
    Codina, Ramon
    Planas, Ramon
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 234 : 399 - 416
  • [30] IMEX and exact sequence discretization of the multi-fluid plasma model
    Miller, S. T.
    Cyr, E. C.
    Shadid, J. N.
    Kramer, R. M. J.
    Phillips, E. G.
    Conde, S.
    Pawlowski, R. P.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 397