CONVERGENT FINITE ELEMENT DISCRETIZATION OF THE MULTI-FLUID NONSTATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS EQUATIONS

被引:0
|
作者
Banas, Lubomir [1 ,2 ]
Prohl, Andreas [3 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
关键词
APPROXIMATION; STATIONARY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a convergent implicit stabilized finite element discretization of the nonstationary incompressible magnetohydrodynamics equations with variable density, viscosity, and electric conductivity. The discretization satisfies a discrete energy law, and a discrete maximum principle for the positive density, and iterates converge to weak solutions of the limiting problem for vanishing discretization parameters. A simple fixed point scheme, together with an appropriate stopping criterion is proposed, which decouples the computation of density, velocity, and magnetic field, and inherits the above properties, provided a mild mesh constraint holds. Computational studies are provided.
引用
收藏
页码:1957 / 1999
页数:43
相关论文
共 50 条
  • [1] CONVERGENT FINITE ELEMENT DISCRETIZATIONS OF THE NONSTATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS SYSTEM
    Prohl, Andreas
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (06): : 1065 - 1087
  • [2] A parallel finite element algorithm for nonstationary incompressible magnetohydrodynamics equations
    Tang, Qili
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2018, 28 (07) : 1579 - 1595
  • [3] A parallel finite element method for incompressible magnetohydrodynamics equations
    Dong, Xiaojing
    He, Yinnian
    APPLIED MATHEMATICS LETTERS, 2020, 102
  • [4] Analysis of an Unconditionally Convergent Stabilized Finite Element Formulation for Incompressible Magnetohydrodynamics
    Badia, Santiago
    Codina, Ramon
    Planas, Ramon
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2015, 22 (04) : 621 - 636
  • [5] Analysis of an Unconditionally Convergent Stabilized Finite Element Formulation for Incompressible Magnetohydrodynamics
    Santiago Badia
    Ramon Codina
    Ramon Planas
    Archives of Computational Methods in Engineering, 2015, 22 : 621 - 636
  • [6] Analysis of a semi-implicit structure-preserving finite element method for the nonstationary incompressible Magnetohydrodynamics equations
    Qiu, Weifeng
    Shi, Ke
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (10) : 2150 - 2161
  • [7] A Finite Element Variational Multiscale Method for Stationary Incompressible Magnetohydrodynamics Equations
    Huang, Huayi
    Huang, Yunqing
    Tang, Qili
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2022,
  • [8] The Particle Finite Element Method for Multi-Fluid Flows
    Idelsohn, S. R.
    Mier-Torrecilla, M.
    Marti, J.
    Onate, E.
    PARTICLE-BASED METHODS: FUNDAMENTALS AND APPLICATIONS, 2011, 25 : 135 - 158
  • [9] Multi-fluid flows with the Particle Finite Element Method
    Idelsohn, Sergio
    Mier-Torrecilla, Monica
    Onate, Eugenio
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (33-36) : 2750 - 2767
  • [10] A modified characteristics projection finite element method for unsteady incompressible Magnetohydrodynamics equations
    Jing, Shujie
    Guan, Jixiang
    Si, Zhiyong
    AIMS MATHEMATICS, 2020, 5 (04): : 3922 - 3951