One-shot integral invariant shape priors for variational segmentation

被引:0
|
作者
Manay, S
Cremers, D
Yezzi, A
Soatto, S
机构
[1] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA
[2] Georgia Inst Technol, Atlanta, GA 30332 USA
[3] Univ Calif Los Angeles, Los Angeles, CA 90024 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We match shapes, even under severe deformations, via a smooth reparametrization of their integral invariant signatures. These robust signatures and correspondences are the foundation of a shape energy functional for variational image segmentation. Integral invariant shape templates do not require registration and allow for significant deformations of the contour, such as the articulation of the object's parts. This enables generalization to multiple instances of a shape from a single template, instead of requiring several templates for searching or training. This paper motivates and presents the energy functional, derives the gradient descent direction to optimize the functional, and demonstrates the method, coupled with a data term, on real image data where the object's parts are articulated.
引用
收藏
页码:414 / 426
页数:13
相关论文
共 50 条
  • [21] Multigrid one-shot method for aerodynamic shape optimization
    Hazra, Subhendu Bikash
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (03): : 1527 - 1547
  • [22] Make One-Shot Video Object Segmentation Efficient Again
    Meinhardt, Tim
    Leal-Taixe, Laura
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [23] Fully Convolutional One-Shot Object Segmentation for Industrial Robotics
    Schnieders, Benjamin
    Luo, Shan
    Palmer, Gregory
    Tuyls, Karl
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1161 - 1169
  • [24] Bilateral guidance network for one-shot metal defect segmentation
    Shan, Dexing
    Zhang, Yunzhou
    Liu, Xiaozheng
    Zhao, Jiaqi
    Coleman, Sonya
    Kerr, Dermot
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 131
  • [25] One-shot Joint Extraction, Registration and Segmentation of Neuroimaging Data
    Su, Yao
    Qian, Zhentian
    Ma, Lei
    He, Lifang
    Kong, Xiangnan
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2049 - 2060
  • [26] A Spatiotemporal Mask Autoencoder for One-shot Video Object Segmentation
    Chen, Baiyu
    Zhao, Li
    Chan, Sixian
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON FRONTIERS OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, FAIML 2024, 2024, : 6 - 12
  • [27] Contour Transformer Network for One-Shot Segmentation of Anatomical Structures
    Lu, Yuhang
    Zheng, Kang
    Li, Weijian
    Wang, Yirui
    Harrison, Adam P.
    Lin, Chihung
    Wang, Song
    Xiao, Jing
    Lu, Le
    Kuo, Chang-Fu
    Miao, Shun
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (10) : 2672 - 2684
  • [28] One-Shot Learning-Based Animal Video Segmentation
    Xue, Tengfei
    Qiao, Yongliang
    Kong, He
    Su, Daobilige
    Pan, Shirui
    Rafique, Khalid
    Sukkarieh, Salah
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (06) : 3799 - 3807
  • [29] One-Shot Video Object Segmentation Using Attention Transfer
    Chanda, Omit
    Wang, Yang
    2019 IEEE 21ST INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP 2019), 2019,
  • [30] Variational Prototyping-Encoder: One-Shot Learning with Prototypical Images
    Kim, Junsik
    Oh, Tae-Hyun
    Lee, Seokju
    Pan, Fei
    Kweon, In So
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9454 - 9462