Koppelman Formulas on Smooth Compact Toric Varieties

被引:0
|
作者
Tryfonos, C. [1 ]
Vidras, A. [1 ]
机构
[1] Univ Cyprus, Dept Math & Stat, POB 20537, CY-1678 Nicosia, Cyprus
关键词
INTEGRAL-REPRESENTATION;
D O I
10.1007/s00025-022-01624-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we derive an explicit Koppelman integral representation formula in terms of the combinatorial data on smooth compact toric varieties for (0, q) smooth forms taking values in specific line bundles. The n-dimensional toric varieties are such that their Newton polyhedron contains the origin and the standard base {e(1), ..., e(n)} of R-n. Applying the above formula one obtains an alternative proof about vanishing of the Dolbeault cohomology groups of (0, q) forms over such smooth compact toric varieties with values in various lines bundles.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] Koppelman Formulas on Smooth Compact Toric Varieties
    C. Tryfonos
    A. Vidras
    Results in Mathematics, 2022, 77
  • [2] Examples of smooth compact toric varieties that are not quasitoric manifolds
    Suyama, Yusuke
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (05): : 3097 - 3106
  • [3] Global Koppelman Formulas on (Singular) Projective Varieties
    Mats Andersson
    The Journal of Geometric Analysis, 2019, 29 : 2290 - 2317
  • [4] Global Koppelman Formulas on (Singular) Projective Varieties
    Andersson, Mats
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (03) : 2290 - 2317
  • [5] Flux compactification on smooth, compact three-dimensional toric varieties
    Larfors, Magdalena
    Luest, Dieter
    Tsimpis, Dimitrios
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (07):
  • [6] Flux compactification on smooth, compact three-dimensional toric varieties
    Magdalena Larfors
    Dieter Lüst
    Dimitrios Tsimpis
    Journal of High Energy Physics, 2010
  • [7] ON THE EXISTENCE OF CERTAIN SMOOTH TORIC VARIETIES
    GRETENKORT, J
    KLEINSCHMIDT, P
    STURMFELS, B
    DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (03) : 255 - 262
  • [8] Strongly symmetric smooth toric varieties
    Cuntz, M.
    Ren, Y.
    Trautmann, G.
    KYOTO JOURNAL OF MATHEMATICS, 2012, 52 (03) : 597 - 620
  • [9] Perverse sheaves on smooth toric varieties
    Dupont, Delphine
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (15-16) : 853 - 856
  • [10] ON THE CLASSIFICATION OF SMOOTH PROJECTIVE TORIC VARIETIES
    BATYREV, VV
    TOHOKU MATHEMATICAL JOURNAL, 1991, 43 (04) : 569 - 585