Topological structure of solution sets to parabolic problems

被引:0
|
作者
Durikovic, V
Durikovicová, M
机构
[1] SS Cyril & Methodius Univ, Dept Appl Math, Trnava 91700, Slovakia
[2] Comenius Univ, Dept Math Anal, Bratislava 84248, Slovakia
[3] Slovak Univ Technol Bratislava, Dept Math, Bratislava 81231, Slovakia
关键词
initial-boundary value preoblem; linear and nonlinear Fredholm operator; proper; coercive and surjective operator; singular; critical and regular point; bifurcation point;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we deal with the Peano phenomenon for general initial-boundary value problems of quasilinear parabolic equations with arbitrary even order space derivatives. The nonlinearity is assumed to be a continuous or continuously Frechet differentiable function. Using a method of transformation to an operator equation and employing the theory of proper, Fredholm (linear and nonlinear) and Nemitskii operators, we study the existence of solution of the given problem and qualitative and quantitative structure of its solution and bifurcation sets. These results can be applied to the different technical and natural science models.
引用
收藏
页码:313 / 348
页数:36
相关论文
共 50 条
  • [41] On the solution sets of linear complementarity problems
    Murthy, GSR
    Parthasarathy, T
    Sriparna, B
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) : 1229 - 1235
  • [42] ON SOLUTION SETS FOR CONVEX OPTIMIZATION PROBLEMS
    Lee, Gue Myung
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (10) : 1733 - 1739
  • [43] Topological properties of solution sets for stochastic evolution inclusions
    Zhou, Yong
    Peng, Li
    Ahmad, Bashir
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (01) : 114 - 137
  • [44] On the solution stability of parabolic optimal control problems
    Corella, Alberto Dominguez
    Jork, Nicolai
    Veliov, Vladimir M.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 86 (03) : 1035 - 1079
  • [45] STABILITY OF EXTRAPOLATED SCHEMATA IN SOLUTION TO PARABOLIC PROBLEMS
    GORGIEVSKI, S
    REVUE FRANCAISE D INFORMATIQUE DE RECHERCHE OPERATIONNELLE, 1971, 5 (NR3): : 112 - +
  • [46] LIOUVILLE THEOREMS FOR SOLUTION OF PARABOLIC BOUNDARY PROBLEMS
    IVASISHEN, SD
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1978, (12): : 1071 - 1075
  • [47] A TOPOLOGICAL PROPERTY OF SOLUTION SETS OF SEMILINEAR DIFFERENTIAL INCLUSIONS
    Cernea, Aurelian
    FIXED POINT THEORY, 2014, 15 (01): : 33 - 42
  • [48] AN EFFECTIVE SOLUTION OF MIXED PROBLEMS FOR PARABOLIC EQUATIONS
    RASULOV, ML
    DOKLADY AKADEMII NAUK SSSR, 1959, 128 (03): : 478 - 481
  • [49] On the solution stability of parabolic optimal control problems
    Alberto Domínguez Corella
    Nicolai Jork
    Vladimir M. Veliov
    Computational Optimization and Applications, 2023, 86 : 1035 - 1079
  • [50] Topological structure of self-similar sets
    Luo, J
    Rao, H
    Tan, B
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2002, 10 (02) : 223 - 227