New interpretable machine-learning method for single-cell data reveals correlates of clinical response to cancer immunotherapy

被引:16
|
作者
Greene, Evan [1 ,2 ]
Finak, Greg [1 ,2 ]
D'Amico, Leonard A. [1 ,4 ]
Bhardwaj, Nina [8 ]
Church, Candice D. [5 ]
Morishima, Chihiro [5 ]
Ramchurren, Nirasha [1 ,4 ]
Taube, Janis M. [6 ,7 ]
Nghiem, Paul T. [3 ,5 ]
Cheever, Martin A. [3 ,4 ]
Fling, Steven P. [1 ,4 ]
Gottardo, Raphael [1 ,2 ,9 ,10 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, 1124 Columbia St, Seattle, WA 98104 USA
[2] Fred Hutchinson Canc Res Ctr, Biostat Bioinformat & Epidemiol Div, 1124 Columbia St, Seattle, WA 98104 USA
[3] Fred Hutchinson Canc Res Ctr, Clin Res Div, 1124 Columbia St, Seattle, WA 98104 USA
[4] Fred Hutchinson Canc Res Ctr, Canc Immunotherapy Trials Network, 1124 Columbia St, Seattle, WA 98104 USA
[5] Univ Washington, Dept Med, Div Dermatol, Seattle, WA USA
[6] Johns Hopkins Univ, Sch Med, Bloomberg Kimmel Inst Canc Immunotherapy, Baltimore, MD USA
[7] Johns Hopkins Univ, Sch Med, Sidney Kimmel Comprehens Canc Ctr, Baltimore, MD USA
[8] Icahn Sch Med Mt Sinai, Tisch Canc Inst, New York, NY 10029 USA
[9] CHU Vaudois, Lausanne, Switzerland
[10] Univ Lausanne, Lausanne, Switzerland
来源
PATTERNS | 2021年 / 2卷 / 12期
关键词
FLOW-CYTOMETRY DATA; T-CELLS; IDENTIFICATION; MARKER; MASS;
D O I
10.1016/j.patter.2021.100372
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new method for single-cell cytometry studies, FAUST, which performs unbiased cell population discovery and annotation. FAUST processes experimental data on a per-sample basis and returns biologically interpretable cell phenotypes, making it well suited for the analysis of complex datasets. We provide simulation studies that compare FAUST with existing methodology, exemplifying its strength. We apply FAUST to data from a Merkel cell carcinoma anti-PD-1 trial and discover pre-treatment effector memory T cell correlates of outcome co-expressing PD-1, HLA-DR, and CD28. Using FAUST, we then validate these correlates in cryopreserved peripheral blood mononuclear cell samples from the same study, as well as an independent CyTOF dataset from a published metastatic melanoma trial. Finally, we show how FAUST's phenotypes can be used to perform cross-study data integration in the presence of diverse staining panels. Together, these results establish FAUST as a powerful new approach for unbiased discovery in single-cell cytometry.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Integrative insights and clinical applications of single-cell sequencing in cancer immunotherapy
    Liu, Zaoqu
    Li, Huanyun
    Dang, Qin
    Weng, Siyuan
    Duo, Mengjie
    Lv, Jinxiang
    Han, Xinwei
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2022, 79 (11)
  • [22] Integrative insights and clinical applications of single-cell sequencing in cancer immunotherapy
    Zaoqu Liu
    Huanyun Li
    Qin Dang
    Siyuan Weng
    Mengjie Duo
    Jinxiang Lv
    Xinwei Han
    Cellular and Molecular Life Sciences, 2022, 79
  • [23] Machine learning combined with single-cell analysis reveals predictive capacity and immunotherapy response of T cell exhaustion-associated lncRNAs in uterine corpus endometrial carcinoma
    Jiang, Feng
    Tao, Ziyu
    Zhang, Yun
    Xie, Xiaoyan
    Bao, Yunlei
    Hu, Yifang
    Ding, Jingxin
    Wu, Chuyan
    CELLULAR SIGNALLING, 2024, 117
  • [24] Machine-learning and combined analysis of single-cell and bulk-RNA sequencing identified a DC gene signature to predict prognosis and immunotherapy response for patients with lung adenocarcinoma
    Zhang, Liangyu
    Guan, Maohao
    Zhang, Xun
    Yu, Fengqiang
    Lai, Fancai
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (15) : 13553 - 13574
  • [25] Machine-learning and combined analysis of single-cell and bulk-RNA sequencing identified a DC gene signature to predict prognosis and immunotherapy response for patients with lung adenocarcinoma
    Liangyu Zhang
    Maohao Guan
    Xun Zhang
    Fengqiang Yu
    Fancai Lai
    Journal of Cancer Research and Clinical Oncology, 2023, 149 : 13553 - 13574
  • [26] Profiling intratumoral heterogeneity of bladder cancer subtypes at the single-cell level using machine-learning assisted histopathology.
    van Rhijn, Bas
    Mertens, Laura
    Mayr, Roman
    Bostrom, Peter
    Marques, Mirari
    van Leenders, Geert
    Gotz, Stefanie
    van der Heijden, Michiel
    Jewett, Michael
    Real, Francisco
    Stohr, Robert
    Zlotta, Alexandre
    Eckstein, Markus
    Soorojebally, Yanish
    Burger, Max
    Otto, Wolfgang
    Radvanyi, Francois
    Pouessel, Damien
    van der Kwast, Theo
    Malats, Nuria
    Hartmann, Arndt
    Allory, Yves
    van der Schoot, Deric
    Zwarthoff, Ellen
    Zuiverloon, Tahlita
    CLINICAL CANCER RESEARCH, 2020, 26 (15) : 58 - 59
  • [27] Single-cell spatial multiomics reveals tumor microenvironment vulnerabilities in cancer resistance to immunotherapy
    Quek, Camelia
    Pratapa, Aditya
    Bai, Xinyu
    Al-Eryani, Ghamdan
    da Silva, Ines Pires
    Mayer, Aaron
    Bartonicek, Nenad
    Harvey, Kate
    Maher, Nigel G.
    Conway, Jordan W.
    Kasalo, Rebecca J.
    Ben Cheikh, Bassem
    Braubach, Oliver
    Palendira, Umaimainthan
    Saw, Robyn P. M.
    Stretch, Jonathan R.
    Shannon, Kerwin F.
    Menzies, Alexander M.
    Scolyer, Richard A.
    Long, Georgina V.
    Swarbrick, Alexander
    Wilmott, James S.
    CELL REPORTS, 2024, 43 (07):
  • [28] Editorial: Machine Learning and Mathematical Models for Single-Cell Data Analysis
    Ou-Yang, Le
    Zhang, Xiao-Fei
    Zhang, Jiajun
    Chen, Jin
    Wu, Min
    FRONTIERS IN GENETICS, 2022, 13
  • [29] Statistical and machine learning methods for immunoprofiling based on single-cell data
    Zhang, Jingxuan
    Li, Jia
    Lin, Lin
    HUMAN VACCINES & IMMUNOTHERAPEUTICS, 2023, 19 (02)
  • [30] Unravelling single-cell DNA replication timing dynamics using machine learning reveals heterogeneity in cancer progression
    Josephides, Joseph M.
    Chen, Chun-Long
    NATURE COMMUNICATIONS, 2025, 16 (01)