HBRNet: Boundary Enhancement Segmentation Network for Cropland Extraction in High-Resolution Remote Sensing Images

被引:11
|
作者
Sheng, Jiajia [1 ,2 ]
Sun, Youqiang [1 ]
Huang, He [1 ,3 ]
Xu, Wenyu [1 ,2 ]
Pei, Haotian [1 ,4 ]
Zhang, Wei [1 ,4 ]
Wu, Xiaowei [3 ]
机构
[1] Chinese Acad Sci, Hefei Inst Phys Sci, Hefei 230031, Peoples R China
[2] USTC, Sci Isl Branch, Grad Sch, Hefei 230026, Peoples R China
[3] Anhui Zhongke Intelligent Sence Ind Technol Res I, Wuhu 241070, Peoples R China
[4] Anhui Univ, Inst Phys Sci, Hefei 230601, Peoples R China
来源
AGRICULTURE-BASEL | 2022年 / 12卷 / 08期
关键词
high-resolution remote sensing images; semantic segmentation; transformer; boundary refinement; cropland extraction; WAVELET;
D O I
10.3390/agriculture12081284
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Cropland extraction has great significance in crop area statistics, intelligent farm machinery operations, agricultural yield estimates, and so on. Semantic segmentation is widely applied to remote sensing image cropland extraction. Traditional semantic segmentation methods using convolutional networks result in a lack of contextual and boundary information when extracting large areas of cropland. In this paper, we propose a boundary enhancement segmentation network for cropland extraction in high-resolution remote sensing images (HBRNet). HBRNet uses Swin Transformer with the pyramidal hierarchy as the backbone to enhance the boundary details while obtaining context. We separate the boundary features and body features from the low-level features, and then perform a boundary detail enhancement module (BDE) on the high-level features. Endeavoring to fuse the boundary features and body features, the module for interaction between boundary information and body information (IBBM) is proposed. We select remote sensing images containing large-scale cropland in Yizheng City, Jiangsu Province as the Agricultural dataset for cropland extraction. Our algorithm is applied to the Agriculture dataset to extract cropland with mIoU of 79.61%, OA of 89.4%, and IoU of 84.59% for cropland. In addition, we conduct experiments on the DeepGlobe, which focuses on the rural areas and has a diversity of cropland cover types. The experimental results indicate that HBRNet improves the segmentation performance of the cropland.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] MFALNet: A Multiscale Feature Aggregation Lightweight Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Lv, Liang
    Guo, Yiyou
    Bao, Tengfei
    Fu, Chenqin
    Huo, Hong
    Fang, Tao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (12) : 2172 - 2176
  • [42] Semantic segmentation of high-resolution remote sensing images using fully convolutional network with adaptive threshold
    Wu, Zhihuan
    Gao, Yongming
    Li, Lei
    Xue, Junshi
    Li, Yuntao
    CONNECTION SCIENCE, 2019, 31 (02) : 169 - 184
  • [43] High-Resolution Boundary-Constrained and Context-Enhanced Network for Remote Sensing Image Segmentation
    Xu, Yizhe
    Jiang, Jie
    REMOTE SENSING, 2022, 14 (08)
  • [44] Hybrid region merging method for segmentation of high-resolution remote sensing images
    Zhang, Xueliang
    Xiao, Pengfeng
    Feng, Xuezhi
    Wang, Jiangeng
    Wang, Zuo
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 98 : 19 - 28
  • [45] Dual decoupling semantic segmentation model for high-resolution remote sensing images
    Liu S.
    Li X.
    Yu M.
    Xing G.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (04): : 638 - 647
  • [46] Automatic Selection of Optimal Segmentation Scales for High-resolution Remote Sensing Images
    Yin, Ruijuan
    Shi, Runhe
    Gao, Wei
    REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY X, 2013, 8869
  • [47] Anomaly Segmentation for High-Resolution Remote Sensing Images Based on Pixel Descriptors
    Li, Jingtao
    Wang, Xinyu
    Zhao, Hengwei
    Wang, Shaoyu
    Zhong, Yanfei
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4426 - 4434
  • [48] SEMANTIC SEGMENTATION OF HIGH-RESOLUTION REMOTE SENSING IMAGES USING AN IMPROVED TRANSFORMER
    Liu, Yuheng
    Mei, Shaohui
    Zhang, Shun
    Wang, Ye
    He, Mingyi
    Du, Qian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3496 - 3499
  • [49] High-Resolution Polar Network for Object Detection in Remote Sensing Images
    He, Xu
    Ma, Shiping
    He, Linyuan
    Ru, Le
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [50] High-Resolution Polar Network for Object Detection in Remote Sensing Images
    He, Xu
    Ma, Shiping
    He, Linyuan
    Ru, Le
    IEEE Geoscience and Remote Sensing Letters, 2022, 19