Optimum extensions of prefix codes

被引:0
|
作者
Mandoiu, II [1 ]
机构
[1] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA
关键词
algorithms; prefix codes; dynamic programming; quadrangle inequality;
D O I
10.1016/S0020-0190(98)00026-X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An algorithm is given for finding the minimum weight extension of a prefix code. The algorithm runs in O(n(3)), where n is the number of codewords to be added, and works for arbitrary alphabets. For binary alphabets the running time is reduced to O(n(2)), by Using the fact that a certain cost matrix satisfies the quadrangle inequality. The quadrangle inequality is shown not to hold for alphabets of size larger than two. Similar algorithms are presented for finding alphabetic and length-limited code extensions. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:35 / 40
页数:6
相关论文
共 50 条
  • [21] COMPLETE FINITE PREFIX CODES
    PERRIN, D
    PERROT, JF
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 269 (24): : 1116 - &
  • [22] Conjugacy relations of prefix codes
    He, Yong
    Cui, Zhenhe
    Yuan, Zihan
    THEORETICAL COMPUTER SCIENCE, 2016, 635 : 85 - 93
  • [23] DENDROGRAMS AND IRREDUCIBLE PREFIX CODES
    MCALPIN, J
    NIKOLOPOULOS, C
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 507 : 179 - 184
  • [24] Completing prefix codes in submonoids
    Néraud, J
    THEORETICAL COMPUTER SCIENCE, 2006, 356 (1-2) : 245 - 254
  • [25] Two properties of prefix codes and uniquely decodable codes
    Xu, Jie
    Zheng, Zhiyong
    Tian, Kun
    Chen, Man
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (10) : 3321 - 3330
  • [26] Two properties of prefix codes and uniquely decodable codes
    Jie Xu
    Zhiyong Zheng
    Kun Tian
    Man Chen
    Designs, Codes and Cryptography, 2023, 91 : 3321 - 3330
  • [27] Optimum multiflow DMT with cyclic prefix
    Song, XJ
    Dasgupta, S
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 353 - 356
  • [28] COMBINATORIAL PROPERTY OF FINITE PREFIX CODES
    LUCA, AD
    INFORMATION AND CONTROL, 1978, 37 (03): : 267 - 279
  • [29] SELF-SYNCHRONIZATION OF PREFIX CODES
    SCHWARTZ, ES
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1964, 10 (04) : 400 - &
  • [30] Prime decompositions of regular prefix codes
    Czyzowicz, J
    Fraczak, W
    Pelc, A
    Rytter, W
    IMPLEMENTATION AND APPLICATION OF AUTOMATA, 2003, 2608 : 85 - 94