Predicting protein-protein interactions from primary structure

被引:419
|
作者
Bock, JR [1 ]
Gough, DA [1 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
关键词
D O I
10.1093/bioinformatics/17.5.455
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: An ambitious goal of proteomics is to elucidate the structure, interactions and functions of ail proteins within cells and organisms. The expectation is that this will provide a fuller appreciation of cellular processes and networks at the protein level, ultimately leading to a better understanding of disease mechanisms and suggesting new means for intervention. This paper addresses the question: can protein-protein interactions be predicted directly from primary structure and associated data? Using a diverse database of known protein interactions, a Support Vector Machine (SVM) learning system was trained to recognize and predict interactions based solely on primary structure and associated physicochemical properties. Results: Inductive accuracy of the trained system, defined here as the percentage of correct protein interaction predictions for previously unseen test sets, averaged 80% for the ensemble of statistical experiments. Future proteomics studies may benefit from this research by proceeding directly from the automated identification of a cell's gene products to prediction of protein interaction pairs.
引用
收藏
页码:455 / 460
页数:6
相关论文
共 50 条
  • [31] Modeling Protein-Protein Interface Interactions as a Means for Predicting Protein-Protein Interaction Partners
    Reyes, Vicente M.
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2009, 26 (06): : 873 - 873
  • [32] Challenges in Predicting Protein-Protein Interactions from Measurements of Molecular Diffusivity
    Sorret, Lea L.
    DeWinter, Madison A.
    Schwartz, Daniel K.
    Randolph, Theodore W.
    BIOPHYSICAL JOURNAL, 2016, 111 (09) : 1831 - 1842
  • [33] Effect of the quality of the interaction data on predicting protein function from protein-protein interactions
    Qing-Shan Ni
    Zheng-Zhi Wang
    Gang-Guo Li
    Guang-Yun Wang
    Ying-Jie Zhao
    Interdisciplinary Sciences: Computational Life Sciences, 2009, 1 : 40 - 45
  • [34] Predicting protein-protein interactions from protein domains using a set cover approach
    Huang, Chengbang
    Morcos, Faruck
    Kanaan, Simon P.
    Wuchty, Stefan
    Chen, Danny Z.
    Izaguirre, Jesus A.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2007, 4 (01) : 78 - 87
  • [35] Effect of the Quality of the Interaction Data on Predicting Protein Function from Protein-protein Interactions
    Ni, Qing-Shan
    Wang, Zheng-Zhi
    Li, Gang-Guo
    Wang, Guang-Yun
    Zhao, Ying-Jie
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2009, 1 (01) : 40 - 45
  • [36] Computational approaches for predicting protein-protein interactions: A survey
    Yu J.
    Fotouhi F.
    Journal of Medical Systems, 2006, 30 (1) : 39 - 44
  • [37] Predicting disease genes using protein-protein interactions
    Oti, M.
    Snel, B.
    Huynen, M. A.
    Brunner, H. G.
    JOURNAL OF MEDICAL GENETICS, 2006, 43 (08) : 691 - 698
  • [38] Predicting protein-protein interactions using signature products
    Martin, S
    Roe, D
    Faulon, JL
    BIOINFORMATICS, 2005, 21 (02) : 218 - 226
  • [39] Predicting protein-protein interactions by a supervised learning classifier
    Huang, Y
    Frishman, D
    Muchnik, I
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2004, 28 (04) : 291 - 301
  • [40] Machine learning solutions for predicting protein-protein interactions
    Casadio, Rita
    Martelli, Pier Luigi
    Savojardo, Castrense
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2022, 12 (06)