Triunitary quantum circuits

被引:34
|
作者
Jonay, Cheryne [1 ]
Khemani, Vedika [1 ]
Ippoliti, Matteo [1 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 04期
关键词
THERMALIZATION;
D O I
10.1103/PhysRevResearch.3.043046
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a class of quantum circuits that are unitary along three distinct "arrows of time." These dynamics share some of the analytical tractability of "dual-unitary" circuits, while exhibiting distinctive and richer phenomenology. We find that two-point correlations in these dynamics are strictly confined to three directions in (1 + 1)-dimensional spacetime-the two light cone edges, delta x = +/-nu delta t, and the static worldline delta x = 0. Along these directions, correlation functions are obtained exactly in terms of quantum channels built from the individual gates that make up the circuit. We prove that, for a class of initial states, entanglement grows at the maximum allowed speed up to an entropy density of at least one half of the thermal value, at which point it becomes model-dependent. Finally, we extend our circuit construction to 2 + 1 dimensions, where two-point correlation functions are confined to the one-dimensional edges of a tetrahedral light cone-a subdimensional propagation of information reminiscent of "fractonic" physics.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Variational quantum circuits for quantum state tomography
    Liu, Yong
    Wang, Dongyang
    Xue, Shichuan
    Huang, Anqi
    Fu, Xiang
    Qiang, Xiaogang
    Xu, Ping
    Huang, He-Liang
    Deng, Mingtang
    Guo, Chu
    Yang, Xuejun
    Wu, Junjie
    PHYSICAL REVIEW A, 2020, 101 (05)
  • [22] Errors of quantum gates in superconducting quantum circuits
    Song, ZiXuan
    Luo, Kai
    Xiang, Liang
    Cui, JiangYu
    Guo, QiuJiang
    Yung, ManHong
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2025, 55 (04)
  • [23] Training of quantum circuits on a hybrid quantum computer
    Zhu, D.
    Linke, N. M.
    Benedetti, M.
    Landsman, K. A.
    Nguyen, N. H.
    Alderete, C. H.
    Perdomo-Ortiz, A.
    Korda, N.
    Garfoot, A.
    Brecque, C.
    Egan, L.
    Perdomo, O.
    Monroe, C.
    SCIENCE ADVANCES, 2019, 5 (10)
  • [24] Sparse Quantum Codes from Quantum Circuits
    Bacon, Dave
    Flammia, Steven T.
    Harrow, Aram W.
    Shi, Jonathan
    STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2015, : 327 - 334
  • [25] Efficient quantum circuits for Szegedy quantum walks
    Loke, T.
    Wang, J. B.
    ANNALS OF PHYSICS, 2017, 382 : 64 - 84
  • [26] Efficient quantum circuits for quantum computational chemistry
    Yordanov, Yordan S.
    Arvidsson-Shukur, David R. M.
    Barnes, Crispin H. W.
    PHYSICAL REVIEW A, 2020, 102 (06)
  • [27] Capacity and Quantum Geometry of Parametrized Quantum Circuits
    Haug, Tobias
    Bharti, Kishor
    Kim, M. S.
    PRX QUANTUM, 2021, 2 (04):
  • [28] Quantum thermodynamics for quantum computing: Superconducting circuits
    Blok, Machiel S.
    Landi, Gabriel T.
    NATURE PHYSICS, 2025, 21 (02) : 187 - 188
  • [29] The Simplified Quantum Circuits for Implementing Quantum Teleportation
    Zhang, Wen-Xiu
    Song, Guo-Zhu
    Wei, Hai-Rui
    ANNALEN DER PHYSIK, 2024, 536 (10)
  • [30] Quantum-statistical simulations for quantum circuits
    Fischer, K
    Matuttis, HG
    Ito, N
    Ishikawa, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2002, 13 (07): : 931 - 945