MP-RRT#: a Model Predictive Sampling-based Motion Planning Algorithm for Unmanned Aircraft Systems

被引:8
|
作者
Primatesta, Stefano [1 ]
Osman, Abdalla [2 ]
Rizzo, Alessandro [2 ]
机构
[1] Politecn Torino, Dept Mech & Aerosp Engn, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Politecn Torino, Dept Elect & Telecommun, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
Unmanned aerial vehicles; Unmanned aircraft; Kinodynamic motion planning; Sampling-based motion planning; Model predictive control; TRAJECTORY TRACKING;
D O I
10.1007/s10846-021-01501-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a kinodynamic motion planning algorithm for Unmanned Aircraft Systems (UAS), called MP-RRT#. MP-RRT# joins the potentialities of RRT# with a strategy based on Model Predictive Control to efficiently solve motion planning problems under differential constraints. Similar to other RRT-based algorithms, MP-RRT# explores the map constructing an asymptotically optimal graph. In each iteration the graph is extended with a new vertex in the reference state of the UAS. Then, a forward simulation is performed using a Model Predictive Control strategy to evaluate the motion between two adjacent vertices, and a trajectory in the state space is computed. As a result, the MP-RRT# algorithm eventually generates a feasible trajectory for the UAS satisfying dynamic constraints. Simulation results obtained with a simulated drone controlled with the PX4 autopilot corroborate the validity of the MP-RRT# approach.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Sampling-based algorithms for optimal motion planning
    Karaman, Sertac
    Frazzoli, Emilio
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2011, 30 (07): : 846 - 894
  • [22] An Effort Bias for Sampling-based Motion Planning
    Kiesel, Scott
    Gu, Tianyi
    Ruml, Wheeler
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 2864 - 2871
  • [23] Sampling-based Motion Planning with Temporal Goals
    Bhatia, Amit
    Kavraki, Lydia E.
    Vardi, Moshe Y.
    2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, : 2689 - 2696
  • [24] Current issues in sampling-based motion planning
    Lindemann, SR
    LaValle, SM
    ROBOTICS RESEARCH, 2005, 15 : 36 - 54
  • [25] Sampling-Based Motion Planning: A Comparative Review
    Orthey, Andreas
    Chamzas, Constantinos
    Kavraki, Lydia E.
    ANNUAL REVIEW OF CONTROL ROBOTICS AND AUTONOMOUS SYSTEMS, 2024, 7 : 285 - 310
  • [26] The Critical Radius in Sampling-based Motion Planning
    Solovey, Kiril
    Kleinbort, Michal
    ROBOTICS: SCIENCE AND SYSTEMS XIV, 2018,
  • [27] Custom distribution for sampling-based motion planning
    Flores-Aquino, Gabriel O.
    Irving Vasquez-Gomez, J.
    Gutierrez-Frias, Octavio
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (03)
  • [28] Sampling-Based Robot Motion Planning: A Review
    Elbanhawi, Mohamed
    Simic, Milan
    IEEE ACCESS, 2014, 2 : 56 - 77
  • [29] Sampling-Based Motion Planning on Sequenced Manifolds
    Englert, Peter
    Fernandez, Isabel M. Rayas
    Ramachandran, Ragesh K.
    Sukhatme, Gaurav S.
    ROBOTICS: SCIENCE AND SYSTEM XVII, 2021,
  • [30] The critical radius in sampling-based motion planning
    Solovey, Kiril
    Kleinbort, Michal
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (2-3): : 266 - 285