Gas-Cell Referenced Swept Source Phase Sensitive Optical Coherence Tomography

被引:12
|
作者
Kuranov, Roman V. [1 ]
McElroy, Austin B. [2 ]
Kemp, Nate [2 ]
Baranov, Stepan [3 ]
Taber, Joe [2 ]
Feldman, Marc D. [4 ]
Milner, Thomas E. [5 ]
机构
[1] Volcano Corp, San Antonio, TX 78247 USA
[2] Volcano Corp, Billerica, MA USA
[3] Univ Houston, Dept Biomed Engn, Houston, TX 77204 USA
[4] Univ Texas Hlth Sci Ctr San Antonio, Dept Med, San Antonio, TX 78229 USA
[5] Univ Texas Austin, Dept Biomed Engn, Austin, TX 78712 USA
关键词
Biomedical optical imaging; optical coherence tomography (OCT); phase measurements; SPEED; FLOW; NANOPARTICLES; TISSUE; BLOOD;
D O I
10.1109/LPT.2010.2055842
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Distinct reference and signal interferometers in combination with a gas-cell spectral reference are employed to increase sensitivity and environmental stability of a swept source phase-sensitive optical coherence tomography. A displacement sensitivity (DS) of 65 pm at 280-mu m depth and DS degradation with depth of 0.0015 rad/mm is achieved. Differential DS of 234 pm in a 127-mu m-thick scattering phantom is six-fold superior to previously reported values. DS degradation with a depth of 0.026 rad/mm is reported for tissue-like scattering phantoms. Measured depth-dependent DS suggests that digitization time jitter noise contributes to degradation of phase sensitivity with depth.
引用
收藏
页码:1524 / 1526
页数:3
相关论文
共 50 条
  • [31] Ocular biometry with swept-source optical coherence tomography
    Montes-Mico, Robert
    Pastor-Pascual, Francisco
    Ruiz-Mesa, Ramon
    Tana-Rivero, Pedro
    JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2021, 47 (06): : 802 - 814
  • [32] Numerical jitter estimation for swept source optical coherence tomography
    Zhu, Lida
    Miyazawa, Arata
    Mukherjee, Pradipta
    Abd El-Sadek, Ibrahim
    Oikawa, Kensuke
    Oida, Daisuke
    Yasuno, Yoshiaki
    BIOMEDICAL IMAGING AND SENSING CONFERENCE 2020, 2020, 11521
  • [33] High axial resolution swept source for optical coherence tomography
    Cordes, A. H.
    Xavier, G. B.
    de Faria, G. Vilela
    von der Weid, J. P.
    ELECTRONICS LETTERS, 2010, 46 (01) : 27 - 28
  • [34] Swept source optical coherence tomography artifacts in glaucoma patients
    Lee, S. Y.
    Seo, S. J.
    Lee, Y. H.
    Bae, H. Y.
    Kim, C. Y.
    ACTA OPHTHALMOLOGICA, 2014, 92
  • [35] Reproducibility of the measurements taken with swept source optical coherence tomography
    Orduna Hospital, E.
    Vilades Palomar, E.
    Cipres, M.
    Obis, J.
    Rodrigo, M. J.
    Satue, M.
    Garcia-Martin, E.
    ACTA OPHTHALMOLOGICA, 2017, 95
  • [36] SPECTRAL SIGNAL PROCESSING IN SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY
    Chang, Shoude
    Mao, Youxin
    Flueraru, Costel
    PHOTONICS NORTH 2010, 2010, 7750
  • [37] Swept source optical coherence tomography angiography in choroidal melanoma
    Pellegrini, Marco
    Corvi, Federico
    Ravera, Vittoria
    Staurenghi, Giovanni
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)
  • [38] Widefield Swept-Source Optical Coherence Tomography Angiography
    Shahidzadeh, Anoush
    Kim, Alice Yon
    Aziz, Hassan A.
    Durbin, Mary K.
    Puliafito, Carmen A.
    Kashani, Amir H.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [39] VISUALIZATION OF THE MACULA IN GAS-FILLED EYES Spectral Domain Optical Coherence Tomography Versus Swept-Source Optical Coherence Tomography
    Ahn, Seong Joon
    Park, Seung Hoon
    Lee, Byung Ro
    RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2018, 38 (03): : 480 - 489
  • [40] Choroidal imaging in gas-filled eye using swept source optical coherence tomography
    Maruko, Ichiro
    Sugano, Yukinori
    Oyamada, Hiroshi
    Sekiryu, Tetsuju
    Iida, Tomohiro
    Akiba, Masahiro
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (15)