Mining electronic health records to identify influential predictors associated with hospital admission of patients with dementia: an artificial intelligence approach

被引:0
|
作者
Zhou, Shang-Ming [1 ]
Tsang, Gavin [3 ]
Xie, Xianghua [3 ]
Huo, Lin [2 ]
Brophy, Sinead [1 ]
Lyons, Ronan A. [1 ]
机构
[1] Swansea Univ, Med Sch, Hlth Data Res UK Wales & Northern Ireland Site, Swansea, W Glam, Wales
[2] Guangxi Univ, China ASEAN Res Inst, Nanning, Peoples R China
[3] Swansea Univ, Dept Comp Sci, Swansea, W Glam, Wales
来源
LANCET | 2018年 / 392卷
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:9 / 9
页数:1
相关论文
共 42 条
  • [41] Measuring the Value of a Practical Text Mining Approach to Identify Patients With Housing Issues in the Free-Text Notes in Electronic Health Record: Findings of a Retrospective Cohort Study
    Hatef, Elham
    Singh Deol, Gurmehar
    Rouhizadeh, Masoud
    Li, Ashley
    Eibensteiner, Katyusha
    Monsen, Craig B.
    Bratslaver, Roman
    Senese, Margaret
    Kharrazi, Hadi
    FRONTIERS IN PUBLIC HEALTH, 2021, 9
  • [42] Text and Data Mining of Longitudinal Electronic Health Records (EHRs) in a Primary Care Population Can Identify Heart Failure (HF) Patients Months to Years Prior to Formal Diagnosis Using the Framingham Criteria
    Steinhubl, Steven R.
    Williams, Brent A.
    Sun, Jimeng
    Byrd, Roy J.
    Daar, Zahra S.
    Ebadollahi, Shahram
    Stewart, Walter F.
    CIRCULATION, 2011, 124 (21)