Mining electronic health records to identify influential predictors associated with hospital admission of patients with dementia: an artificial intelligence approach

被引:0
|
作者
Zhou, Shang-Ming [1 ]
Tsang, Gavin [3 ]
Xie, Xianghua [3 ]
Huo, Lin [2 ]
Brophy, Sinead [1 ]
Lyons, Ronan A. [1 ]
机构
[1] Swansea Univ, Med Sch, Hlth Data Res UK Wales & Northern Ireland Site, Swansea, W Glam, Wales
[2] Guangxi Univ, China ASEAN Res Inst, Nanning, Peoples R China
[3] Swansea Univ, Dept Comp Sci, Swansea, W Glam, Wales
来源
LANCET | 2018年 / 392卷
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:9 / 9
页数:1
相关论文
共 42 条
  • [1] Mining electronic health records to identify predictive factors associated with hospital admission for Campylobacter infections
    Zhou, Shang-Ming
    Muhammad, Rahman A.
    Sheppard, Samuel
    Howe, Robin
    Lyons, Ronan A.
    Brophy, Sinead
    LANCET, 2017, 390 : S99 - S99
  • [2] Using artificial intelligence to identify patients with migraine and associated symptoms and conditions within electronic health records
    Daniel Riskin
    Roger Cady
    Anand Shroff
    Nada A. Hindiyeh
    Timothy Smith
    Steven Kymes
    BMC Medical Informatics and Decision Making, 23
  • [3] Using artificial intelligence to identify patients with migraine and associated symptoms and conditions within electronic health records
    Riskin, Daniel
    Cady, Roger
    Shroff, Anand
    Hindiyeh, Nada A. A.
    Smith, Timothy
    Kymes, Steven
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [4] USING ARTIFICIAL INTELLIGENCE TO IDENTIFY ANTINEUTROPHIL CYTOPLASMATIC ANTIBODY (ANCA)ASSOCIATED VASCULITIS PATIENTS IN ELECTRONIC HEALTH RECORDS
    Van Leeuwen, J.
    Penne, E.
    Teng, Y. K. O.
    ANNALS OF THE RHEUMATIC DISEASES, 2023, 82 : 922 - 923
  • [5] Text Mining Electronic Health Records to Identify Hospital Adverse Events
    Gerdes, Lars Ulrik
    Hardahl, Christian
    MEDINFO 2013: PROCEEDINGS OF THE 14TH WORLD CONGRESS ON MEDICAL AND HEALTH INFORMATICS, PTS 1 AND 2, 2013, 192 : 1145 - 1145
  • [6] Artificial Intelligence Models to Identify Patients with High Probability of Glaucoma Using Electronic Health Records
    Ravindranath, Rohith
    Wang, Sophia Y.
    OPHTHALMOLOGY SCIENCE, 2025, 5 (03):
  • [7] Development of Artificial Intelligence Models to Identify Patients at High Risk For Glaucoma Using National Electronic Health Records
    Ravindranath, Rohith
    Wang, Sophia Y.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (07)
  • [8] Using an artificial intelligence tool incorporating natural language processing to identify patients with a diagnosis of ANCA-associated vasculitis in electronic health records
    van Leeuwen, Jolijn R.
    Penne, Erik L.
    Rabelink, Ton
    Knevel, Rachel
    Teng, Y. K. Onno
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 168
  • [9] Artificial intelligence processing electronic health records to identify commonalities and comorbidities cluster at Immuno Center Humanitas
    Morandini, Pierandrea
    Laino, Maria Elena
    Paoletti, Giovanni
    Carlucci, Alessandro
    Tommasini, Tobia
    Angelotti, Giovanni
    Pepys, Jack
    Canonica, Giorgio Walter
    Heffler, Enrico
    Savevski, Victor
    Puggioni, Francesca
    CLINICAL AND TRANSLATIONAL ALLERGY, 2022, 12 (06)
  • [10] Do hospital electronic medical records reliably register pre-admission medications in patients with dementia?
    Pisa, Federica Edith
    Palese, Francesca
    Romanese, Federico
    Barbone, Fabio
    Logroscino, Giancarlo
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2017, 26 : 296 - 296