A new approach to in situ sediment remediation based on air-cathode microbial fuel cells

被引:67
|
作者
Yuan, Yong [1 ]
Zhou, Shungui [1 ]
Zhuang, Li [1 ]
机构
[1] Guangdong Inst Ecoenvironm & Soil Sci, Guangzhou 510650, Guangdong, Peoples R China
关键词
Cloth assembly cathode; In situ sediment bioremediation; Sediment microbial fuel cell; Tubular air-cathode microbial fuel cell; BIOREMEDIATION; HYDROCARBONS; GENERATION; ELECTRODE;
D O I
10.1007/s11368-010-0276-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Purpose As an attempt to remove the back color and odor of the organic-rich sediment, a novel tubular air-cathode MFC (TAC-MFC) was constructed and employed for in situ sediment remediation. The biodegradation of organic matter in sediment was stimulated by providing anodic electrode as an electron acceptor. The TAC-MFC was more favorable for application than typical sediment-type MFCs, whose performances are strongly limited due to the drawbacks such as low oxygen availability of cathodes, big electrode spacing, and fouling of cathodes. Materials and methods The TAC-MFC was constructed with a cloth cathode assembly (CCA) structure that consisted of a conductive, catalytic, and waterproof layer to replace the cathode and ionic exchange membrane in a typical MFC. By simply inserting TAC-MFC into the sediment, a whole electrochemical biosystem was established for simultaneous organic matter oxidization and electricity generation. The MFC performance for power generation and sediment bioremediation were evaluated under various external loadings, in terms of power density and the sediment quality parameters including loss on ignition (LOI), readily oxidizable organic matter (ROOM), and acid volatile sulfide (AVS). Results and discussion The highest power density (107.1 +/- 8.6 mW/m(2)), coulombic efficiency (17.9%), and the lowest internal resistance (20 Omega) were obtained from the TACMFC that was loaded with an external resistance of 30 Omega. At the same time, LOI was decreased by about 33.1%, ROOM was decreased by about 36.0%, and AVS was decreased by about 94.9% in the sediment. Under closed circuit conditions, the oxidation and reduction potential value in the sediment increased from -162.5 to +245.7 mV, suggesting that an improved environment of sediment was achieved upon MFC treatment. Conclusions A higher power output was achieved in the proposed TAC-MFC compared with sediment-type MFCs reported in previous literature, indicating that the TAC-MFC with a CCA was a desirable configuration. From the analysis of sediment quality parameters, the proposed MFC was demonstrated to be a potential means for the sediment remediation coupled with electricity production.
引用
收藏
页码:1427 / 1433
页数:7
相关论文
共 50 条
  • [41] Research on air-cathode of anaerobic fluidized bed microbial fuel cell
    Yue, Xuehai
    Kong, Weifang
    Wang, Xuyun
    Guo, Qingjie
    Huagong Xuebao/CIESC Journal, 2013, 64 (01): : 352 - 356
  • [42] The performance of phosphorus (P)-doped activated carbon as a catalyst in air-cathode microbial fuel cells
    Chen, Zhihao
    Li, Kexun
    Pu, Liangtao
    BIORESOURCE TECHNOLOGY, 2014, 170 : 379 - 384
  • [43] Electrochemical analysis of separators used in single-chamber, air-cathode microbial fuel cells
    Wei, Bin
    Tokash, Justin C.
    Zhang, Fang
    Kim, Younggy
    Logan, Bruce E.
    ELECTROCHIMICA ACTA, 2013, 89 : 45 - 51
  • [44] Temporal variations of cathode performance in air-cathode single-chamber microbial fuel cells with different separators
    Ma, Jinxing
    Wang, Zhiwei
    Suor, Denis
    Liu, Shumeng
    Li, Jiaqi
    Wu, Zhichao
    JOURNAL OF POWER SOURCES, 2014, 272 : 24 - 33
  • [45] Performance of air-cathode stacked microbial fuel cells systems for wastewater treatment and electricity production
    Baltazar Estrada-Arriaga, Edson
    Guillen-Alonso, Yvonne
    Morales-Morales, Cornelio
    Garcia-Sanchez, Liliana
    Obed Bahena-Bahena, Erick
    Guadarrama-Perez, Oscar
    Loyola-Morales, Felix
    WATER SCIENCE AND TECHNOLOGY, 2017, 76 (03) : 683 - 693
  • [46] Influence of Humidity on Performance of Single Chamber Air-Cathode Microbial Fuel Cells with Different Separators
    Lee, Mungyu
    Kondaveeti, Sanath
    Jeon, Taeyeon
    Kim, Inhae
    Min, Booki
    PROCESSES, 2020, 8 (07)
  • [47] Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells
    Logan, Bruce
    Cheng, Shaoan
    Watson, Valerie
    Estadt, Garett
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (09) : 3341 - 3346
  • [48] Characterization of Fe/N-doped graphene as air-cathode catalyst in microbial fuel cells
    Wang, Dingling
    Ma, Zhaokun
    Xie, Yang'en
    Song, Huaihe
    JOURNAL OF ENERGY CHEMISTRY, 2017, 26 (06) : 1187 - 1195
  • [49] A high-performance rotating graphite fiber brush air-cathode for microbial fuel cells
    Chen, Shuiliang
    Patil, Sunil A.
    Schroeder, Uwe
    APPLIED ENERGY, 2018, 211 : 1089 - 1094
  • [50] Characterization of Fe/N-doped graphene as air-cathode catalyst in microbial fuel cells
    Dingling Wang
    Zhaokun Ma
    Yang'en Xie
    Huaihe Song
    Journal of Energy Chemistry, 2017, 26 (06) : 1187 - 1195