Winds induce CO2 exchange with the atmosphere and vadose zone transport in a karstic ecosystem

被引:22
|
作者
Sanchez-Canete, Enrique P. [1 ,2 ]
Oyonarte, Cecilio [3 ]
Serrano-Ortiz, Penelope [4 ,5 ]
Curiel Yuste, Jorge [6 ]
Perez-Priego, Oscar [7 ]
Domingo, Francisco [8 ]
Kowalski, Andrew S. [2 ,5 ]
机构
[1] Univ Arizona, Earth Sci B2, Biosphere 2, Tucson, AZ 85721 USA
[2] Univ Granada, Dept Fis Aplicada, Granada, Spain
[3] Univ Almeria, Dept Agron, Almeria, Spain
[4] Univ Granada, Dept Ecol Terr, Granada, Spain
[5] Ctr Andaluz Medio Ambiente IISTA CEAMA, Granada, Spain
[6] CSIC, Museo Nacl Ciencias Nat, Madrid, Spain
[7] Max Planck Inst Biogeochem, Jena, Germany
[8] CSIC, Estn Expt Zonas Aridas, Almeria, Spain
关键词
GAS-DIFFUSION COEFFICIENT; CARBON-DIOXIDE EFFLUX; EDDY-COVARIANCE; SOIL RESPIRATION; GRADIENT-METHOD; MODELING DIFFUSION; TEMPORAL DYNAMICS; TEMPERATE FOREST; FLUX; PRESSURE;
D O I
10.1002/2016JG003500
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Research on the subterranean CO2 dynamics has focused individually on either surface soils or bedrock cavities, neglecting the interaction of both systems as a whole. In this regard, the vadose zone contains CO2-enriched air (ca. 5% by volume) in the first meters, and its exchange with the atmosphere can represent from 10 to 90% of total ecosystem CO2 emissions. Despite its importance, to date still lacking are reliable and robust databases of vadose zone CO2 contents that would improve knowledge of seasonal-annual aboveground-belowground CO2 balances. Here we study 2.5 years of vadose zone CO2 dynamics in a semiarid ecosystem. The experimental design includes an integrative approach to continuously measure CO2 in vertical and horizontal soil profiles, following gradients from surface to deep horizons and from areas of net biological CO2 production (under plants) to areas of lowest CO2 production (bare soil), as well as a bedrock borehole representing karst cavities and ecosystem-scale exchanges. We found that CO2 followed similar seasonal patterns for the different layers, with the maximum seasonal values of CO2 delayed with depth (deeper more delayed). However, the behavior of CO2 transport differed markedly among layers. Advective transport driven by wind induced CO2 emission both in surface soil and bedrock, but with negligible effect on subsurface soil, which appears to act as a buffer impeding rapid CO2 exchanges. Our study provides the first evidence of enrichment of CO2 under plant, hypothesizing that CO2-rich air could come from root zone or by transport from deepest layers through cracks and fissures.
引用
收藏
页码:2049 / 2063
页数:15
相关论文
共 50 条
  • [11] USING ECOSYSTEM MODELS TO PREDICT REGIONAL CO2 EXCHANGE BETWEEN THE ATMOSPHERE AND THE TERRESTRIAL BIOSPHERE
    King, Anthony
    O'Neill, Robert
    DeAngelis, Donald
    GLOBAL BIOGEOCHEMICAL CYCLES, 1989, 3 (04) : 337 - 361
  • [12] TIMING THE TRANSPORT OF WATER THROUGH THE UPPER VADOSE ZONE IN A KARSTIC SYSTEM ABOVE A CAVE IN ISRAEL
    EVEN, H
    CARMI, I
    MAGARITZ, M
    GERSON, R
    EARTH SURFACE PROCESSES AND LANDFORMS, 1986, 11 (02) : 181 - 191
  • [13] The CO2-Vadose project: Time-lapse geoelectrical monitoring during CO2 diffusion in the carbonate vadose zone
    Le Roux, Olivier
    Cohen, Gregory
    Loisy, Corinne
    Laveuf, Cedric
    Delaplace, Philippe
    Magnier, Caroline
    Rouchon, Virgile
    Cerepi, Adrian
    Garcia, Bruno
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 16 : 156 - 166
  • [14] The CO2-Vadose project: Experimental study and modelling of CO2 induced leakage and tracers associated in the carbonate vadose zone
    Cohen, Gregory
    Loisy, Corinne
    Laveuf, Cedric
    Le Roux, Olivier
    Delaplace, Philippe
    Magnier, Caroline
    Rouchon, Virgile
    Garcia, Bruno
    Cerepi, Adrian
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 14 : 128 - 140
  • [15] The DEMO-CO2 project: A vadose zone CO2 and tracer leakage field experiment
    Rillard, Jean
    Loisy, Corinne
    Le Roux, Olivier
    Cerepi, Adrian
    Garcia, Bruno
    Noirez, Sonia
    Rouchon, Virgile
    Delaplace, Philippe
    Willequet, Olivier
    Bertrand, Claude
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 39 : 302 - 317
  • [16] Ecosystem-atmosphere exchange of CO2 in a temperate herbaceous peatland in the Sanjiang Plain of northeast China
    Zhu, Xiaoyan
    Song, Changchun
    Swarzenski, Christopher Martin
    Guo, Yuedong
    Zhang, Xinhou
    Wang, Jiaoyue
    ECOLOGICAL ENGINEERING, 2015, 75 : 16 - 23
  • [17] Ecosystem-atmosphere CO2 exchange:: interpreting signals of change using stable isotope ratios
    Flanagan, LB
    Ehleringer, AR
    TRENDS IN ECOLOGY & EVOLUTION, 1998, 13 (01) : 10 - 14
  • [18] The SMAP Level 4 Carbon Product for Monitoring Ecosystem Land-Atmosphere CO2 Exchange
    Jones, Lucas A.
    Kimball, John S.
    Reichle, Rolf H.
    Madani, Nima
    Glassy, Joe
    Ardizzone, Joe V.
    Colliander, Andreas
    Cleverly, James
    Desai, Ankur R.
    Eamus, Derek
    Euskirchen, Eugenie S.
    Hutley, Lindsay
    Macfarlane, Craig
    Scott, Russell L.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (11): : 6517 - 6532
  • [19] A MULTISCALE AND MULTIDISCIPLINARY INVESTIGATION OF ECOSYSTEM-ATMOSPHERE CO2 EXCHANGE OVER THE ROCKY MOUNTAINS OF COLORADO
    Sun, Jielun
    Oncley, Steven P.
    Burns, Sean P.
    Stephens, Britton B.
    Lenschow, Donald H.
    Campos, Teresa
    Monson, Russell K.
    Schimel, David S.
    Sacks, William J.
    De Wekker, Stephan F. J.
    Lai, Chun-Ta
    Lamb, Brian
    Ojima, Dennis
    Ellsworth, Patrick Z.
    Sternberg, Leonel S. L.
    Zhong, Sharon
    Clements, Craig
    Moore, David J. P.
    Anderson, Dean E.
    Watt, Andrew S.
    Hu, Jia
    Tschudi, Mark
    Aulenbach, Steven
    Allwine, Eugene
    Coons, Teresa
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2010, 91 (02) : 209 - 230
  • [20] Effects of elevated atmospheric CO2 on net ecosystem CO2 exchange of a scrub-oak ecosystem
    Hymus, GJ
    Johnson, DP
    Dore, S
    Anderson, HP
    Hinkle, CR
    Drake, BG
    GLOBAL CHANGE BIOLOGY, 2003, 9 (12) : 1802 - 1812