Global optimization: Local minima and transition points

被引:12
|
作者
Floudas, CA [1 ]
Jongen, HT
机构
[1] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA
[2] Rhein Westfal TH Aachen, Dept Math, D-52056 Aachen, Germany
关键词
global optimization; local minima; saddle points; transition points of first order;
D O I
10.1007/s10898-004-0865-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the minimization of smooth functions of the Euclidean space with a finite number of stationary points having moderate asymptotic behavior at infinity. The crucial role of transition points of first order (i.e., saddle points of index 1) is emphasized. It is shown that (generically) any two local minima can be connected via an alternating sequence of local minima and transition points of first order. In particular, the graph with local minima as its nodes and first order transition points representing the edges turns out to be connected (Theorem A). On the other hand, any connected (finite) graph can be realized in the above sense by means of a smooth function of three variables having a minimal number of stationary points (Theorem B).
引用
收藏
页码:409 / 415
页数:7
相关论文
共 50 条
  • [1] Global Optimization: Local Minima and Transition Points
    C. A. Floudas
    H. Th. Jongen
    Journal of Global Optimization, 2005, 32 : 409 - 415
  • [2] CONDITIONS OF IDENTITY OF LOCAL AND GLOBAL MINIMA IN DISCRETE OPTIMIZATION PROBLEMS
    LEBEDEVA, TT
    SERGIENKO, IV
    SOLTAN, VP
    DOKLADY AKADEMII NAUK SSSR, 1985, 283 (02): : 287 - 289
  • [3] MORE ON CONDITIONS OF LOCAL AND GLOBAL MINIMA COINCIDENCE IN DISCRETE OPTIMIZATION PROBLEMS
    LEBEDEVA, TT
    SERGIENKO, IV
    SOLTAN, VP
    CYBERNETICS AND SYSTEMS ANALYSIS, 1993, 29 (05) : 685 - 693
  • [4] Steering Orbital Optimization out of Local Minima and Saddle Points Toward Lower Energy
    Vaucher, Alain C.
    Reiher, Markus
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (03) : 1219 - 1228
  • [5] FUNCTIONS WHOSE STATIONARY POINTS ARE GLOBAL MINIMA
    ZANG, I
    CHOO, EU
    AVRIEL, M
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1977, 22 (02) : 195 - 208
  • [6] FUNCTIONS WHOSE LOCAL MINIMA ARE GLOBAL
    ZANG, I
    AVRIEL, M
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1975, 16 (3-4) : 183 - 190
  • [7] Existence of global minima for constrained optimization
    Ozdaglar, A. E.
    Tseng, P.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 128 (03) : 523 - 546
  • [8] Existence of Global Minima for Constrained Optimization
    A. E. Ozdaglar
    P. Tseng
    Journal of Optimization Theory and Applications, 2006, 128 : 523 - 546
  • [9] ADIABATIC OPTIMIZATION WITHOUT LOCAL MINIMA
    Jarret, Michael
    Jordan, Stephen P.
    QUANTUM INFORMATION & COMPUTATION, 2015, 15 (3-4) : 181 - 199
  • [10] Adiabatic optimization without local minima
    Jarret, Michael
    Jordan, Stephen P.
    Quantum Information and Computation, 2015, 15 (3-4): : 181 - 199