Robust nonparametric estimation of the conditional tail dependence coefficient

被引:4
|
作者
Goegebeur, Yuri [1 ]
Guillou, Armelle [2 ,3 ]
Nguyen Khanh Le Ho [1 ]
Qin, Jing [1 ]
机构
[1] Univ Southern Denmark, Dept Math & Comp Sci, Campusvej 55, DK-5230 Odense M, Denmark
[2] Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[3] CNRS, 7 Rue Rene Descartes, F-67084 Strasbourg, France
关键词
Coefficient of tail dependence; Empirical process; Local estimation; Robustness; BIAS-CORRECTED ESTIMATION; UNIFORM CONSISTENCY; LOCAL ROBUST; INDEX; EXPONENT; RATES;
D O I
10.1016/j.jmva.2020.104607
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider robust and nonparametric estimation of the coefficient of tail dependence in presence of random covariates. The estimator is obtained by fitting the extended Pareto distribution locally to properly transformed bivariate observations using the minimum density power divergence criterion. We establish convergence in probability and asymptotic normality of the proposed estimator under some regularity conditions. The finite sample performance is evaluated with a small simulation experiment, and the practical applicability of the method is illustrated on a real dataset of air pollution measurements. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条