Layered Poly(3-hexylthiophene) Nanowhiskers Studied by Atomic Force Microscopy and Kelvin Probe Force Microscopy

被引:17
|
作者
McFarland, Frederick M. [1 ]
Brickson, Benjamin [2 ]
Guo, Song [1 ]
机构
[1] Univ So Mississippi, Dept Chem & Biochem, Hattiesburg, MS 39406 USA
[2] Petal High Sch, Petal, MS 39465 USA
基金
美国国家科学基金会;
关键词
FIELD-EFFECT TRANSISTORS; ELECTRONIC CHARACTERIZATION; CHARGE-TRANSPORT; MORPHOLOGY; NANOSCALE; MICROSTRUCTURE; NANOSTRUCTURES; PERFORMANCE; MONOLAYER; MOBILITY;
D O I
10.1021/ma502411n
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The optoelectronic properties of organic electronic materials are significantly affected by their molecular packing and local environments. Herein, atomic force microscopy (AFM) is used to characterize nanowhiskers of poly(3-hexylthiphene) (P3HT). The P3HT nanowhiskers form layered structures with distinctive heights that increase over time, suggesting that layered structures are more thermodynamically favored in solution. Further inspection reveals that the monolayer (ML) nanowhiskers are consistently wider than double-layered (DL) ones. The width disparity is likely due to the sliding of pi-pi stacked motifs within ML nanowhiskers evident by the rougher edges Of ML nanowhiskers. Conversely, the interfacial interactions between two P3HT monolayers may inhibit the sliding of conjugated motifs inside nanowhiskers, leading to much narrower and tightly packed structures. Kelvin probe force microscopy (KPFM) measurements are carried out to investigate the influence of ML and DL nanowhiskers' morphologies and local environments on their electronic properties. Curved, vertically stacked, and overlapped regions show higher,contact potential differences (CPD) resulting from a combined effect of irregular molecular packing and local environmental impacts.
引用
收藏
页码:3049 / 3056
页数:8
相关论文
共 50 条
  • [21] Photoinduced charge redistribution characterization on zno-Poly(3- Hexylthiophene) heterojunction by photoassisted kelvin probe force microscopy
    Zhang, Yidong
    Journal of Advanced Microscopy Research, 2013, 8 (03) : 231 - 235
  • [22] Kelvin Probe Force Microscopy by Dissipative Electrostatic Force Modulation
    Miyahara, Yoichi
    Topple, Jessica
    Schumacher, Zeno
    Grutter, Peter
    PHYSICAL REVIEW APPLIED, 2015, 4 (05):
  • [23] Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations of organolead tribromide perovskite single crystals
    Almadori, Yann
    Moerman, David
    Martinez, Jaume Llacer
    Leclere, Philippe
    Grevin, Benjamin
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2018, 9 : 1695 - 1704
  • [24] Peak Force Infrared-Kelvin Probe Force Microscopy
    Jakob, Devon S.
    Wang, Haomin
    Zeng, Guanghong
    Otzen, Daniel E.
    Yan, Yong
    Xu, Xiaoji G.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (37) : 16083 - 16090
  • [25] Current and potential characterization on InAs nanowires by contact-mode atomic force microscopy and Kelvin probe force microscopy
    Ono, S
    Takeuchi, M
    Takahashi, T
    ULTRAMICROSCOPY, 2002, 91 (1-4) : 127 - 132
  • [26] Unraveling nanoscale conduction and work function in a poly(3,4-ethylenedioxypyrrole)/carbon nanotube composite by Kelvin probe force microscopy and conducting atomic force microscopy
    Reddy, B. Narsimha
    Deepa, Melepurath
    ELECTROCHIMICA ACTA, 2012, 70 : 228 - 240
  • [27] Kelvin probe force microscopy of beveled semiconductors
    Ferguson, RS
    Fobelets, K
    Cohen, LF
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2002, 20 (05): : 2133 - 2136
  • [28] Kelvin probe force microscopy of molecular surfaces
    Fujihira, M
    ANNUAL REVIEW OF MATERIALS SCIENCE, 1999, 29 : 353 - 380
  • [29] Investigation of the depletion layer by scanning capacitance force microscopy with Kelvin probe force microscopy
    Uruma, Takeshi
    Satoh, Nobuo
    Yamamoto, Hidekazu
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (08)
  • [30] Kelvin probe force microscopy and its application
    Melitz, Wilhelm
    Shen, Jian
    Kummel, Andrew C.
    Lee, Sangyeob
    SURFACE SCIENCE REPORTS, 2011, 66 (01) : 1 - 27