DATA INTENSIVE SCIENTIFIC ANALYSIS WITH GRID COMPUTING

被引:2
|
作者
Terzo, Olivier [1 ]
Mossucca, Lorenzo [1 ]
Cucca, Manuela [2 ]
Notarpietro, Riccardo [2 ]
机构
[1] Ist Super Mario Boella, ARCAS, Turin, Italy
[2] Politecn Torino, Dept Elect DELEN, Turin, Italy
关键词
grid computing; GPS radio occultation; scheduler; agent; e-science;
D O I
10.2478/v10006-011-0016-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
At the end of September 2009, a new Italian GPS receiver for radio occultation was launched from the Satish Dhawan Space Center (Sriharikota, India) on the Indian Remote Sensing OCEANSAT-2 satellite. The Italian Space Agency has established a set of Italian universities and research centers to implement the overall processing radio occultation chain. After a brief description of the adopted algorithms, which can be used to characterize the temperature, pressure and humidity, the contribution will focus on a method for automatic processing these data, based on the use of a distributed architecture. This paper aims at being a possible application of grid computing for scientific research.
引用
收藏
页码:219 / 228
页数:10
相关论文
共 50 条
  • [31] dispe14py: A Python']Python Framework for Data-Intensive Scientific Computing
    Filguiera, Rosa
    Klampanos, Iraklis
    Krause, Amrey
    David, Mario
    Moreno, Alexander
    Atkinson, Malcolm
    2014 INTERNATIONAL WORKSHOP ON DATA-INTENSIVE SCALABLE COMPUTING SYSTEMS (DISCS), 2014, : 9 - 16
  • [32] Scientific applications of grid computing, Part II.
    Boghosian, BM
    Coveney, PV
    COMPUTING IN SCIENCE & ENGINEERING, 2005, 7 (06) : 10 - 11
  • [33] Advanced service trading for scientific computing over the grid
    Aurélie Hurault
    Michel Daydé
    Marc Pantel
    The Journal of Supercomputing, 2009, 49 : 64 - 83
  • [34] Advanced service trading for scientific computing over the grid
    Hurault, Aurelie
    Dayde, Michel
    Pantel, Marc
    JOURNAL OF SUPERCOMPUTING, 2009, 49 (01): : 64 - 83
  • [35] GPU Computing for Compute-Intensive Scientific Calculation
    Dubey, Sandhya Parasnath
    Kumar, M. Sathish
    Balaji, S.
    SOFT COMPUTING FOR PROBLEM SOLVING, SOCPROS 2018, VOL 2, 2020, 1057 : 131 - 140
  • [36] A Scientific Computing Environment for Accessing Grid Computing Systems Using Cloud Services
    Raboso, Mariano
    de la Varga, Jose A.
    Codes, Myriam
    Alonso, Jesus
    del Val, Lara
    Jimenez, Maria I.
    Izquierdo, Alberto
    Villacorta, Juan J.
    DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 2012, 151 : 347 - +
  • [37] Grid computing: The future of distributed computing for high performance scientific and business applications
    Mukherjee, S
    Mustafi, J
    Chaudhuri, A
    DISTRIBUTED COMPUTING, PROCEEDINGS: MOBILE AND WIRELESS COMPUTING, 2002, 2571 : 339 - 342
  • [38] BioGridPSE: Integrated solution for bioinformatics analysis using computing and data grid
    Sun, Choong-Hyun
    Han, Youngwoong
    Kim, Minseong
    Yi, Gwan-Su
    GCC 2005: FIFTH INTERNATIONAL CONFERENCE ON GRID AND COOPERATIVE COMPUTING, PROCEEDINGS, 2006, : 514 - +
  • [39] Performance-driven task and data co-scheduling algorithms for data-intensive applications in grid computing
    Huang, CQ
    Chen, D
    Zheng, Y
    Hu, HL
    ADVANCED WEB TECHNOLOGIES AND APPLICATIONS, 2004, 3007 : 331 - 340
  • [40] Data-Intensive Computing Infrastructure Systems for Unmodified Biological Data Analysis Pipelines
    Bongo, Lars Ailo
    Pedersen, Edvard
    Ernstsen, Martin
    COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, CIBB 2014, 2015, 8623 : 259 - 272