Nonlinear fractional differential equations in nonreflexive Banach spaces and fractional calculus

被引:8
|
作者
Agarwal, Ravi P. [1 ,2 ]
Lupulescu, Vasile [3 ]
O'Regan, Donal [2 ,4 ]
Rahman, Ghaus Ur [5 ]
机构
[1] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
[2] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
[3] Constantin Brancusi Univ, Targu Jiu 210152, Romania
[4] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
[5] Univ Swat, Dept Math & Stat, Khyber Paukhtunkhwa, Pakistan
关键词
WEAK SOLUTIONS; INTEGRAL-EQUATION; KNESERS THEOREM; EXISTENCE;
D O I
10.1186/s13662-015-0451-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to correct some ambiguities and inaccuracies in Agarwal et al. (Commun. Nonlinear Sci. Numer. Simul. 20(1): 59-73, 2015; Adv. Differ. Equ. 2013: 302, 2013, doi:10.1186/1687-1847-2013-302) and to present new ideas and approaches for fractional calculus and fractional differential equations in nonreflexive Banach spaces.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Multiplicity of Positive Solutions for Fractional Differential Equations in Banach Spaces
    Xingqiu ZHANG
    数学研究及应用, 2013, 33 (04) : 429 - 442
  • [32] NONLOCAL FRACTIONAL SEMILINEAR DIFFERENTIAL EQUATIONS IN SEPARABLE BANACH SPACES
    Li, Kexue
    Peng, Jigen
    Gao, Jinghuai
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [33] Fractional functional differential equations with causal operators in Banach spaces
    Agarwal, Ravi P.
    Zhou, Yong
    Wang, JinRong
    Luo, Xiannan
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (5-6) : 1440 - 1452
  • [34] Multiplicity of Positive Solutions for Fractional Differential Equations in Banach Spaces
    Xingqiu ZHANG
    Journal of Mathematical Research with Applications, 2013, (04) : 429 - 442
  • [35] General fractional differential equations of order and Type in Banach spaces
    Mei, Zhan-Dong
    Peng, Ji-Gen
    Gao, Jing-Huai
    SEMIGROUP FORUM, 2017, 94 (03) : 712 - 737
  • [36] CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES
    Abbas, Said
    Benchohra, Mouffak
    Hamidi, Naima
    Henderson, Johnny
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (04) : 1027 - 1045
  • [37] On the Solution Set for Weighted Fractional Differential Equations in Banach Spaces
    Ziane, Mohamed
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2020, 28 (02) : 419 - 430
  • [38] Caputo-Hadamard Fractional Differential Equations in Banach Spaces
    Saïd Abbas
    Mouffak Benchohra
    Naima Hamidi
    Johnny Henderson
    Fractional Calculus and Applied Analysis, 2018, 21 : 1027 - 1045
  • [39] Fractional calculus and symbolic solution of fractional differential equations
    Baumann, G
    Fractals in Biology and Medicine, Vol IV, 2005, : 287 - 298
  • [40] Fractional relaxation equations on Banach spaces
    Lizama, Carlos
    Prado, Humberto
    APPLIED MATHEMATICS LETTERS, 2010, 23 (02) : 137 - 142