Large Scale Real-World Multi-person Tracking

被引:3
|
作者
Shuai, Bing [1 ]
Bergamo, Alessandro [1 ]
Buechler, Uta [1 ]
Berneshawi, Andrew [1 ]
Boden, Alyssa [1 ]
Tighe, Joseph [1 ]
机构
[1] AWS AI Labs, Seattle, WA 98101 USA
来源
COMPUTER VISION, ECCV 2022, PT VIII | 2022年 / 13668卷
关键词
Multi-object tracking; Dataset; MOT;
D O I
10.1007/978-3-031-20074-8_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new large scale multi-person tracking dataset. Our dataset is over an order of magnitude larger than currently available high quality multi-object tracking datasets such as MOT17, HiEve, and MOT20 datasets. The lack of large scale training and test data for this task has limited the community's ability to understand the performance of their tracking systems on a wide range of scenarios and conditions such as variations in person density, actions being performed, weather, and time of day. Our dataset was specifically sourced to provide a wide variety of these conditions and our annotations include rich meta-data such that the performance of a tracker can be evaluated along these different dimensions. The lack of training data has also limited the ability to perform end-to-end training of tracking systems. As such, the highest performing tracking systems all rely on strong detectors trained on external image datasets. We hope that the release of this dataset will enable new lines of research that take advantage of large scale video based training data.
引用
收藏
页码:504 / 521
页数:18
相关论文
共 50 条
  • [21] A Gated Attention Transformer for Multi-Person Pose Tracking
    Doering, Andreas
    Gall, Juergen
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 3181 - 3190
  • [22] Multi-person Tracking Based on Video Information Fusion
    Cao, Jie
    Zheng, Jingrun
    SPORTS MATERIALS, MODELLING AND SIMULATION, 2011, 187 : 452 - 457
  • [23] How does Person Identity Recognition Help Multi-Person Tracking?
    Kuo, Cheng-Hao
    Nevatia, Ram
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, : 1217 - 1224
  • [24] Multi-person tracking for virtual reality surrounding awareness
    Mukhaimar, Ayman
    Miao, Yuan
    Vrcelj, Zora
    Gu, Bruce
    Yang, Ang
    Zhao, Jun
    Sandanayake, Malindu
    Chan, Melissa
    2023 IEEE CONFERENCE ON VIRTUAL REALITY AND 3D USER INTERFACES ABSTRACTS AND WORKSHOPS, VRW, 2023, : 593 - 594
  • [25] Adaptive model-based multi-person tracking
    Lee, KM
    COMPUTATIONAL AND INFORMATION SCIENCE, PROCEEDINGS, 2004, 3314 : 1201 - 1207
  • [26] Online Multi-person Tracking Based on Sparse Representations
    Liao, Min
    Xiao, Guoqiang
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), VOL 1, 2016, : 138 - 142
  • [27] Modelling Ambiguous Assignments for Multi-Person Tracking in Crowds
    Stadler, Daniel
    Beyerer, Jurgen
    2022 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW 2022), 2022, : 133 - 142
  • [28] Improving Multi-Person Pose Tracking With a Confidence Network
    Fu, Zehua
    Zuo, Wenhang
    Hu, Zhenghui
    Liu, Qingjie
    Wang, Yunhong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 5223 - 5233
  • [29] Multi-person Articulated Tracking with Spatial and Temporal Embeddings
    Jin, Sheng
    Liu, Wentao
    Ouyang, Wanli
    Qian, Chen
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 5657 - 5666
  • [30] Real-Time Multi-person Multi-camera Tracking Based on Improved Matching Cascade
    Guo, Yundong
    Wang, Xinjie
    Luo, Hao
    Pu, Huijie
    Liu, Zhenyu
    Tan, Jianrong
    ADVANCES IN INTELLIGENT SYSTEMS AND COMPUTING (ECC 2021), 2022, 268 : 199 - 209