AUTOMATIC OPTIC DISK AND CUP SEGMENTATION OF FUNDUS IMAGES USING DEEP LEARNING

被引:0
|
作者
Edupuganti, Venkata Gopal [1 ]
Chawla, Akshay [1 ]
Kale, Amit [1 ]
机构
[1] Bosch Res & Technol Ctr India, Bangalore 560095, Karnataka, India
关键词
Semantic Segmentation; Neural Networks; Glaucoma; Deep Learning; Fundus Imaging;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Automatic segmentation of optic disk (OD) and cup regions in fundus images is essential in deriving clinical parameters, such as, cup-to-disk ratio (CDR), to assist glaucoma diagnosis. This paper presents a deep learning system using fully convolutional neural networks (FCN) to perform such segmentation, discusses various strategies on how to leverage multiple doctor annotations and prioritize pixels belonging to different regions while training the neural network. Experimental evaluations on Drishti-GS dataset demonstrate that the presented method achieves comparable and superior F-score to prior work on optic disk and cup segmentation, respectively.
引用
收藏
页码:2227 / 2231
页数:5
相关论文
共 50 条
  • [31] Automated Optic Disk Detection in Fundus Images using a Combination of Deep Learning and Local Histogram Matching
    Tavakoli, Meysam
    MEDICAL IMAGING 2022: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2022, 12036
  • [32] Automatic Tool for Optic Disc and Cup Detection on Retinal Fundus Images
    Angel Fernandez-Granero, Miguel
    Sarmiento Vega, Auxiliadora
    Isabel Garcia, Anabel
    Sanchez-Morillo, Daniel
    Jimenez, Soledad
    Alemany, Pedro
    Fondon, Irene
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT I, 2017, 10305 : 246 - 256
  • [33] Mask Overlaying: a Deep Learning Approach for Individual Optic Cup Segmentation from Fundus Image
    Lima, Arthur Azevedo
    de Carvalho Araujo, Alana C.
    de Moura Lima, Alan C.
    de Sousa, Jefferson Alves
    de Almeida, Joao Dallyson S.
    de Paiva, Anselmo Cardoso
    Braz Junior, Geraldo
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP), 27TH EDITION, 2020, : 99 - 104
  • [34] Segmentation of Optic Disc and Optic Cup in Colour Fundus Images Based on Morphological Reconstruction
    Nugroho, Hanung Adi
    Oktoeberza, Widhia K. Z.
    Erasari, Astrid
    Utami, Augustine
    Cahyono, Cerwyn
    2017 9TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ICITEE), 2017,
  • [35] Automatic segmentation of the optic nerve in transorbital ultrasound images using a deep learning approach
    Meiburger, Kristen M.
    Naldi, Andrea
    Marzola, Francesco
    Lochner, Piergiorgio
    INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,
  • [36] Automatic Segmentation of Optic Disc and Cup in Retinal Fundus Images Using Improved Two-Layer Level Set Method
    Wang, Ying
    Yu, Xiaosheng
    Chi, Jianning
    Wu, Chengdong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [37] Automatic laterality finding using deep learning in fundus images
    Dave, Poojan
    Makedonsky, Katherine
    Manivannan, Niranchana
    Sha, Patricia
    Chen, Michael H.
    Durbin, Mary K.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [38] Retinal Optic Disk Segmentation and Analysis in Fundus Images using DBSCAN Clustering Algorithm
    Hamednejad, Golnoush
    Pourghassem, Hossein
    2016 23RD IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING AND 2016 1ST INTERNATIONAL IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING (ICBME), 2016, : 117 - 122
  • [39] Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach
    Welfer, Daniel
    Scharcanski, Jacob
    Kitamura, Cleyson M.
    Dal Pizzol, Melissa M.
    Ludwig, Laura W. B.
    Marinho, Diane Ruschel
    COMPUTERS IN BIOLOGY AND MEDICINE, 2010, 40 (02) : 124 - 137
  • [40] Optic disc and cup segmentation in fundus retinal images using feature detection and morphological techniques
    Priyadharsini, R.
    Beulah, A.
    Sharmila, T. Sree
    CURRENT SCIENCE, 2018, 115 (04): : 748 - 752