Population assignment tests uncover rare long-distance marine larval dispersal events

被引:7
|
作者
D'Aloia, C. C. [1 ,5 ]
Bogdanowicz, S. M. [2 ]
Andres, J. A. [2 ]
Buston, P. M. [3 ,4 ]
机构
[1] Univ New Brunswick, Dept Biol Sci, St John, NB E2L 4L5, Canada
[2] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14853 USA
[3] Boston Univ, Dept Biol, Boston, MA 02215 USA
[4] Boston Univ, Marine Program, Boston, MA 02215 USA
[5] Univ Toronto Mississauga, Dept Biol, Mississauga, ON L5L 1C6, Canada
关键词
connectivity; coral reef; GSI; LDD; population assignment; RUBIAS; seascape genetics; PARENTAGE ANALYSIS; SELF-RECRUITMENT; GENE FLOW; REEF; CONNECTIVITY; PATTERNS;
D O I
10.1002/ecy.3559
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Long-distance dispersal (LDD) is consequential to metapopulation ecology and evolution. In systems where dispersal is undertaken by small propagules, such as larvae in the ocean, documenting LDD is especially challenging. Genetic parentage analysis has gained traction as a method for measuring larval dispersal, but such studies are generally spatially limited, leaving LDD understudied in marine species. We addressed this knowledge gap by uncovering LDD with population assignment tests in the coral reef fish Elacatinus lori, a species whose short-distance dispersal has been well-characterized by parentage analysis. When adults (n = 931) collected throughout the species' range were categorized into three source populations, assignment accuracy exceeded 99%, demonstrating low rates of gene flow between populations in the adult generation. After establishing high assignment confidence, we assigned settlers (n = 3,828) to source populations. Within the settler cohort, E. lori populations, despite the potential for ocean currents to facilitate LDD. More broadly, these findings illustrate the value of combining genetic parentage analysis and population assignment tests to uncover short- and long-distance dispersal, respectively.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Evolutionary consequences of long-distance dispersal in mosquitoes
    Schmidt, Thomas L.
    CURRENT OPINION IN INSECT SCIENCE, 2025, 68
  • [32] Exploring potential establishment of marine rafting species after transoceanic long-distance dispersal
    Simkanin, Christina
    Carlton, James T.
    Steves, Brian
    Fofonoff, Paul
    Nelson, Jocelyn C.
    Murray, Cathryn Clarke
    Ruiz, Gregory M.
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2019, 28 (05): : 588 - 600
  • [33] LONG-DISTANCE SEED DISPERSAL TO MACQUARIE ISLAND
    COSTIN, AB
    NATURE, 1965, 206 (4981) : 317 - &
  • [34] Mechanisms of long-distance dispersal of seeds by wind
    Ran Nathan
    Gabriel G. Katul
    Henry S. Horn
    Suvi M. Thomas
    Ram Oren
    Roni Avissar
    Stephen W. Pacala
    Simon A. Levin
    Nature, 2002, 418 : 409 - 413
  • [35] Rapid, Long-Distance Dispersal by Pumice Rafting
    Bryan, Scott E.
    Cook, Alex G.
    Evans, Jason P.
    Hebden, Kerry
    Hurrey, Lucy
    Colls, Peter
    Jell, John S.
    Weatherley, Dion
    Firn, Jennifer
    PLOS ONE, 2012, 7 (07):
  • [36] Mechanisms of long-distance dispersal of seeds by wind
    Nathan, R
    Katul, GG
    Horn, HS
    Thomas, SM
    Oren, R
    Avissar, R
    Pacala, SW
    Levin, SA
    NATURE, 2002, 418 (6896) : 409 - 413
  • [37] Long-distance dispersal of wolves in the Dauria ecoregion
    Anastasia Kirilyuk
    Vadim E. Kirilyuk
    Rong Ke
    Mammal Research, 2020, 65 : 639 - 646
  • [38] LONG-DISTANCE WIND DISPERSAL OF TREE SEEDS
    GREENE, DF
    JOHNSON, EA
    CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1995, 73 (07): : 1036 - 1045
  • [39] Long-distance dispersal of wolves in the Dauria ecoregion
    Kirilyuk, Anastasia
    Kirilyuk, Vadim E.
    Ke, Rong
    MAMMAL RESEARCH, 2020, 65 (04) : 639 - 646
  • [40] LONG-DISTANCE DISPERSAL AND SELF-INCOMPATIBILITY
    PANDEY, KK
    NEW ZEALAND JOURNAL OF BOTANY, 1979, 17 (02) : 225 - 226