Christoffel functions on convex and starlike domains in Rd

被引:9
|
作者
Kroo, Andras [1 ,2 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
[2] Budapest Univ Technol & Econ, Dept Anal, Budapest, Hungary
关键词
Multivariate polynomials; Starlike sets; Orthogonal polynomials; Christoffel functions; POLYNOMIALS; ASYMPTOTICS;
D O I
10.1016/j.jmaa.2014.07.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the magnitude of the multivariate Christoffel functions on general starlike and convex domains. We will obtain sharp pointwise upper bounds which will reveal the behavior of Christoffel functions near the boundary of the domain and their dependence on the geometry of the domain. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:718 / 729
页数:12
相关论文
共 50 条
  • [31] SUBCLASSES OF STARLIKE FUNCTIONS SUBORDINATE TO CONVEX-FUNCTIONS
    SILVERMAN, H
    SILVIA, EM
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1985, 37 (01): : 48 - 61
  • [32] Optimal Sampling and Christoffel Functions on General Domains
    Matthieu Dolbeault
    Albert Cohen
    Constructive Approximation, 2022, 56 : 121 - 163
  • [33] Optimal Sampling and Christoffel Functions on General Domains
    Dolbeault, Matthieu
    Cohen, Albert
    CONSTRUCTIVE APPROXIMATION, 2022, 56 (01) : 121 - 163
  • [34] Starlike, convex and close-to convex functions of complex order
    Orhan, H
    Kamali, M
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 135 (2-3) : 251 - 262
  • [35] Starlike and convex rational mappings on infinite dimensional domains
    Chu, Cho-Ho
    Hamada, Hidetaka
    Honda, Tatsuhiro
    Kohr, Gabriela
    MATHEMATISCHE NACHRICHTEN, 2009, 282 (02) : 160 - 168
  • [36] On Janowski starlike and convex meromorphic harmonic functions
    Dziok, J.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):
  • [37] On the Chebyshev Polynomial Bounds for λ-Convex and μ-Starlike Functions
    Bulut, Serap
    Magesh, Nanjundan
    Yamini, Jagadesan
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (04): : 1367 - 1374
  • [38] Neighborhoods of Starlike and Convex Functions Associated with Parabola
    Rosihan M. Ali
    K. G. Subramanian
    V. Ravichandran
    OmP Ahuja
    Journal of Inequalities and Applications, 2008
  • [39] A certain connection between starlike and convex functions
    Takahashi, N
    Nunokawa, M
    APPLIED MATHEMATICS LETTERS, 2003, 16 (05) : 653 - 655
  • [40] IMAGES OF DISKS UNDER CONVEX AND STARLIKE FUNCTIONS
    BROWN, JE
    MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (04) : 457 - 462