A DEEP LEARNING-BASED APPROACH FOR CAMERA MOTION CLASSIFICATION

被引:2
|
作者
Ouenniche, Kaouther [1 ]
Tapu, Ruxandra [1 ]
Zaharia, Titus [1 ]
机构
[1] Inst Polytech Paris, Lab SAMOVAR, Telecom SudParis, 9 Rue Charles Fourier, F-91011 Evry, France
关键词
Camera motion classification; deep learning; Resnet; 3D CNN;
D O I
10.1109/EUVIP50544.2021.9483961
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The automatic estimation of the various types of camera motion (e.g., traveling, panning, rolling, zoom.) that are present in videos represents an important challenge for automatic video indexing. Previous research works are mainly based on optical flow estimation and analysis. In this paper, we propose a different, deep learning-based approach that makes it possible to classify the videos according to the type of camera motion. The proposed method is inspired from action recognition approaches and exploits 3D convolutional neural networks with residual blocks. The performances are objectively evaluated on challenging videos, involving blurry frames, fast/slow motion, poorly textured scenes. The accuracy rates obtained (with an average score of 94%) demonstrate the robustness of the proposed model.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Deep Learning-Based Automated Imaging Classification of ADPKD
    Kim, Youngwoo
    Bu, Seonah
    Tao, Cheng
    Bae, Kyongtae T.
    KIDNEY INTERNATIONAL REPORTS, 2024, 9 (06): : 1802 - 1809
  • [42] Deep learning-based network application classification for SDN
    Zhang, Chuangchuang
    Wang, Xingwei
    Li, Fuliang
    He, Qiang
    Huang, Min
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2018, 29 (05):
  • [43] Comparative Study of Deep Learning-Based Sentiment Classification
    Seo, Seungwan
    Kim, Czangyeob
    Kim, Haedong
    Mo, Kyounghyun
    Kang, Pilsung
    IEEE ACCESS, 2020, 8 (08): : 6861 - 6875
  • [44] Deep Learning-Based Algorithm for Classification of News Text
    Yu Li, Xiao
    Han, Ling Bo
    Feng Jiang, Zheng
    IEEE ACCESS, 2024, 12 : 159086 - 159098
  • [45] Deep Learning-Based Method for Classification of Sugarcane Varieties
    Kai, Priscila Marques
    de Oliveira, Bruna Mendes
    da Costa, Ronaldo Martins
    AGRONOMY-BASEL, 2022, 12 (11):
  • [46] Deep Learning-based Text Classification: A Comprehensive Review
    Minaee, Shervin
    Kalchbrenner, Nal
    Cambria, Erik
    Nikzad, Narjes
    Chenaghlu, Meysam
    Gao, Jianfeng
    ACM COMPUTING SURVEYS, 2022, 54 (03)
  • [47] Deep Learning-Based Classification of Spoken English Digits
    Oruh, Jane
    Viriri, Serestina
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [48] A Deep Learning-Based Algorithm for ECG Arrhythmia Classification
    Espin-Ramos, Daniela
    Alvarado, Vicente
    Valarezo Anazco, Edwin
    Flores, Erick
    Nunez, Bolivar
    Santos, Jose
    Guerrero, Sara
    Aviles-Cedeno, Jonathan
    2023 IEEE 13TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS, 2023,
  • [49] Interpretable deep learning-based hippocampal sclerosis classification
    Kim, Dohyun
    Lee, Jungtae
    Moon, Jangsup
    Moon, Taesup
    EPILEPSIA OPEN, 2022, 7 (04) : 747 - 757
  • [50] Deep Learning-Based Firework Video Pattern Classification
    Arachchi, S. P. Kasthuri
    Shih, Timothy K.
    Lin, Chih-Yang
    Wijayarathna, Gamini
    JOURNAL OF INTERNET TECHNOLOGY, 2019, 20 (07): : 2033 - 2042