Ischemia-reperfusion and cardioprotection: A delicate balance between reactive oxygen species generation and redox homeostasis

被引:32
|
作者
Goswami, Shyamal K. [1 ]
Maulik, Nilanjana [1 ]
Das, Dipak K. [1 ]
机构
[1] Univ Connecticut, Sch Med, Cardiovasc Res Ctr, Farmington, CT 06030 USA
关键词
cardiac ischemia; cardiac preconditioning; reactive oxygen species; reactive nitrogen species; redox signaling; reperfusion injury; NF-KAPPA-B; ADENOSINE RECEPTOR ACTIVATION; EMBRYONIC STEM-CELLS; PROTEIN-KINASE-A; NITRIC-OXIDE; SIGNAL-TRANSDUCTION; FREE-RADICALS; REVERSIBLE OXIDATION; MYOCARDIAL-ISCHEMIA; INSULIN-RECEPTOR;
D O I
10.1080/07853890701374677
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Ischemia-reperfusion injury of the myocardium has long been a subject of intense research. Cardiac preconditioning, an associated phenomenon, has also been critically investigated over the past two decades. Although the biochemistry of ischemia-reperfusion and its association with oxidative metabolism has long been established, recent studies have further revealed a more intricate role of a number of reactive oxygen-nitrogen species in those processes. Emerging evidence suggests that an elaborate network of enzymes (and other biomolecules) dedicated to the generation, utilization, and diminution of reactive oxygen-nitrogen species maintains the redox homeostasis in the myocardium, and any perturbation of its status has distinctive effects. It thus appears that while excessive generation of reactive species leads to cellular injury, their regulated generation may cause transient and reversible modifications of cellular proteins leading the transmission of intracellular signals with specific effects. Taken together, generation of reactive oxygen-nitrogen species in the myocardium plays a nodal role in mediating both ischemic injury and cardioprotection.
引用
收藏
页码:275 / 289
页数:15
相关论文
共 50 条
  • [21] Molecular Mechanisms of Ischemia-Reperfusion Injury in Brain: Pivotal Role of the Mitochondrial Membrane Potential in Reactive Oxygen Species Generation
    Sanderson, Thomas H.
    Reynolds, Christian A.
    Kumar, Rita
    Przyklenk, Karin
    Huettemann, Maik
    MOLECULAR NEUROBIOLOGY, 2013, 47 (01) : 9 - 23
  • [22] PICOT alleviates myocardial ischemia-reperfusion injury by reducing intracellular levels of reactive oxygen species
    Kim, Jihwa
    Kim, Jooyeon
    Kook, Hyun
    Park, Woo Jin
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 485 (04) : 807 - 813
  • [23] Effect of ozone treatment on reactive oxygen species and adenosine production during hepatic ischemia-reperfusion
    Peralta, C
    Xaus, C
    Bartrons, R
    Leon, OS
    Gelpi, E
    Roselló-Catafau, J
    FREE RADICAL RESEARCH, 2000, 33 (05) : 595 - 605
  • [24] New Reactive Oxygen Species Scavenger Prevents Injury in Ischemia-Reperfusion Injury Model.
    Bath, N.
    Fahl, W.
    Redfield, R., III
    AMERICAN JOURNAL OF TRANSPLANTATION, 2019, 19 : 742 - 742
  • [25] REACTIVE OXYGEN SPECIES DURING ISCHEMIA-REPERFUSION INJURY IN ISOLATED PERFUSED-RAT-LIVER
    JAESCHKE, H
    SMITH, CV
    MITCHELL, JR
    FEDERATION PROCEEDINGS, 1987, 46 (03) : 410 - 410
  • [26] Reactive oxygen species-responsive nanotherapy for the prevention and treatment of cerebral ischemia-reperfusion injury
    Kong, Jianglong
    Chu, Runxuan
    Wen, Junjie
    Yu, Hongrui
    Liu, Jiawen
    Sun, Yuting
    Mao, Meiru
    Ge, Xiaohan
    Jin, Zixin
    Huang, Weimin
    Hu, Na
    Zhang, Yi
    Wang, David Y.
    Wang, Yi
    CHEMICAL ENGINEERING JOURNAL, 2024, 494
  • [27] Opening of mitochondrial permeability transition pore by reactive oxygen species contributes to the cardioprotection against ischemia/reperfusion injury
    Katoh, H
    Saotome, M
    Yaguchi, Y
    Satoh, H
    Terada, H
    Hayashi, H
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 443A - 444A
  • [28] The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion
    Raedschelders, Koen
    Ansley, David M.
    Chen, David D. Y.
    PHARMACOLOGY & THERAPEUTICS, 2012, 133 (02) : 230 - 255
  • [29] Phagocyte NADPH oxidase-derived reactive oxygen species potentiate ischemia-reperfusion injury.
    Hitt, N
    Russell, R
    Wilt, S
    Holland, S
    Kleinberg, M
    BLOOD, 1998, 92 (10) : 15A - 15A
  • [30] Ischemia-Reperfusion Injury of the Cochlea: Pharmacological Strategies for Cochlear Protection and Implications of Glutamate and Reactive Oxygen Species
    Tabuchi, Keiji
    Nishimura, Bungo
    Tanaka, Shuho
    Hayashi, Kentaro
    Hirose, Yuki
    Hara, Akira
    CURRENT NEUROPHARMACOLOGY, 2010, 8 (02) : 128 - 134