The zeta function for the triangular potential

被引:1
|
作者
Naber, M. G. [1 ]
机构
[1] Monroe Cty Community Coll, Dept Sci & Math, 1555 S Raisinville Rd, Monroe, MI 48161 USA
关键词
D O I
10.1063/5.0071099
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The zeta functions for the Schrodinger equation with a triangular potential are investigated. Values of the zeta functions are computed using both the Weierstrass factorization theorem and analytic continuation via contour integration. The results were found to be consistent where the domains of the two methods overlap. Analytic continuation is used to compute the values of the zeta functions at zero and the negative integers and explore the pole structure (and residue values) as well as the value of the slopes at the origin. Those results are used for the computation of the trace and determinant of the associated Hamiltonians.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] The Zeta function of Riemann
    Fabian, W
    PHILOSOPHICAL MAGAZINE, 1938, 25 (167): : 321 - 322
  • [22] ZETA FUNCTION OF A MONODROMY
    ACAMPO, N
    COMMENTARII MATHEMATICI HELVETICI, 1975, 50 (02) : 233 - 248
  • [23] A disguised zeta function
    tWoord, AN
    AMERICAN MATHEMATICAL MONTHLY, 1996, 103 (08): : 703 - 704
  • [24] The Bessel zeta function
    Naber, M. G.
    Bruck, B. M.
    Costello, S. E.
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (08)
  • [25] The zeta function of a hypergraph
    Storm, Christopher K.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [26] The Probabilistic Zeta Function
    Benesh, Bret
    COMPUTATIONAL GROUP THEORY AND THE THEORY OF GROUPS, II, 2010, 511 : 1 - 9
  • [27] On the Dedekind Zeta Function
    Fomenko O.M.
    Journal of Mathematical Sciences, 2014, 200 (5) : 624 - 631
  • [28] THE ZETA(S) FUNCTION
    VINOGRADOV, IM
    DOKLADY AKADEMII NAUK SSSR, 1958, 118 (04): : 631 - 631
  • [29] The error zeta function
    Hassen, Abdul
    Nguyen, Hieu D.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2007, 3 (03) : 439 - 453
  • [30] ON RIEMANN ZETA FUNCTION
    SPIRA, R
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 44 (174P): : 325 - &