A duality principle in weighted Sobolev spaces on the real line

被引:9
|
作者
Eveson, Simon P. [1 ]
Stepanov, Vladimir D. [2 ,3 ]
Ushakova, Elena P. [4 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[2] Peoples Friendship Univ Russia, Dept Math Anal & Funct Theory, Moscow 117198, Russia
[3] Russian Acad Sci, VA Steklov Math Inst, Moscow 119991, Russia
[4] Russian Acad Sci, Ctr Comp, Far Eastern Branch, Khabarovsk 680000, Russia
基金
俄罗斯科学基金会;
关键词
Embeddings; weighted Sobolev spaces; weighted Lebesgue spaces; duality; norm inequalities; Hardy-Steklov operator; 46E35; OPERATORS; INEQUALITIES; BOUNDEDNESS; KERNEL; SPECTRUM;
D O I
10.1002/mana.201400019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An embedding inequality of Sobolev type is characterized in the paper with help of a duality principle and boundedness criteria for the Hardy-Steklov integral operator in weighted Lebesgue spaces.
引用
收藏
页码:877 / 897
页数:21
相关论文
共 50 条
  • [31] Interpolation Theorems for Weighted Sobolev Spaces
    Kussainova, Leili
    Ospanova, Ademi
    WORLD CONGRESS ON ENGINEERING, WCE 2015, VOL I, 2015, : 25 - +
  • [32] On the Whitney Problem for Weighted Sobolev Spaces
    Tyulenev, A. I.
    Vodop'yanov, S. K.
    DOKLADY MATHEMATICS, 2017, 95 (01) : 79 - 83
  • [33] WEIGHTED NORM ESTIMATES FOR SOBOLEV SPACES
    SCHECHTER, M
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 304 (02) : 669 - 687
  • [34] A new approach to weighted Sobolev spaces
    Kebiche, Djameleddine
    MONATSHEFTE FUR MATHEMATIK, 2025, 206 (04): : 893 - 920
  • [35] Multipliers in weighted Sobolev spaces on the axis
    Myrzagaliyeva, A.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 107 (03): : 105 - 115
  • [36] The Wente inequality on weighted Sobolev spaces
    Baraket, S
    Ben Chaabane, L
    HOUSTON JOURNAL OF MATHEMATICS, 2003, 29 (04): : 1065 - 1075
  • [37] Certain imbeddings of weighted Sobolev spaces
    Jain, P
    Bansal, B
    Jain, PK
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (01): : 105 - 120
  • [38] Jumping nonlinearities and weighted Sobolev spaces
    Rumbos, AJ
    Shapiro, VL
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 214 (02) : 326 - 357
  • [39] On weighted critical imbeddings of Sobolev spaces
    D. E. Edmunds
    H. Hudzik
    M. Krbec
    Mathematische Zeitschrift, 2011, 268 : 585 - 592
  • [40] Continuity and differentiability for weighted Sobolev spaces
    Mizuta, Y
    Shimomura, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (10) : 2985 - 2994