Lattices in Tate modules

被引:2
|
作者
Poonen, Bjorn [1 ]
Rybakov, Sergey [2 ,3 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Russian Acad Sci, Inst Informat Transmiss Problems, Lab 13, Moscow 127051, Russia
[3] Interdisciplinary Sci Ctr JV Poncelet, Moscow 119002, Russia
关键词
abelian variety; Tate module; endomorphism; Dieudonne module; ABELIAN-VARIETIES;
D O I
10.1073/pnas.2113201118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Refining a theorem of Zarhin, we prove that, given a g dimensional abelian variety X and an endomorphism u of X, there exists a matrix A is an element of M-2g(Z) such that each Tate module TeX has a Ze-basis on which the action of u is given by A, and similarly for the covariant Dieudonne module if over a perfect field of characteristic p.
引用
收藏
页数:3
相关论文
共 50 条