Nonlinear Concentration Dependence of the Collective Diffusion Coefficient of TiO2 Nanoparticle Dispersions

被引:10
|
作者
Holmberg, J. Perez [1 ]
Abbas, Z. [1 ]
Ahlberg, E. [1 ]
Hassellov, M. [1 ]
Bergenholtz, J. [1 ]
机构
[1] Univ Gothenburg, Dept Chem, SE-41296 Gothenburg, Sweden
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2011年 / 115卷 / 28期
基金
瑞典研究理事会;
关键词
DYNAMIC LIGHT-SCATTERING; CHARGED COLLOIDAL PARTICLES; SHORT-TIME DYNAMICS; CORRELATION SPECTROSCOPY; BROWNIAN DIFFUSION; PHASE-SEPARATION; HARD-SPHERES; SUSPENSIONS; SEDIMENTATION; SILICA;
D O I
10.1021/jp202585e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous dispersions of titania nanoparticles are shown to yield collective diffusion coefficients in dynamic light-scattering measurements that depend nonlinearly on particle concentration under dilute conditions. From theory, one expects a linear dependence for monodisperse systems except for strongly interacting charged particles in low ionic strength media. Angularly resolved dynamic light-scattering measurements reveal that aggregates are present, which explains the collective diffusion coefficient tending to lower values in the dilute limit than the Stokes-Einstein diffusion coefficient of the nanoparticles. A simple theoretical model based on mixtures of charged nanoparticle spheres and small amounts of larger-sized neutral or weakly charged spheres, modeling the presence of aggregates, is applied and shown to yield predictions in qualitative accord with the experimental trends. In particular, the downward curvature of the collective diffusion coefficient on diluting the system arises in the model from nanoparticles being driven into close proximity to the larger particles by electrostatic interactions. Similar experimental trends observed in silica dispersions suggest that the behavior is not an isolated finding. This study clearly shows that a small number of larger aggregates dramatically change the measured value of the collective diffusion coefficient; thus, care must be exercised when characterizing nanoparticles with dynamic light scattering.
引用
收藏
页码:13609 / 13616
页数:8
相关论文
共 50 条
  • [31] CONCENTRATION-DEPENDENCE OF THE SELF-DIFFUSION COEFFICIENT
    MARQUSEE, JA
    DEUTCH, JM
    JOURNAL OF CHEMICAL PHYSICS, 1980, 73 (10): : 5396 - 5397
  • [32] Inclusion of the concentration dependence of the diffusion coefficient in the sand equation
    S. A. Mareev
    D. Yu. Butyl’skii
    A. V. Kovalenko
    N. D. Pis’menskaya
    L. Dammak
    C. Larchet
    V. V. Nikonenko
    Russian Journal of Electrochemistry, 2016, 52 : 996 - 1000
  • [33] CONCENTRATION-DEPENDENCE OF DIFFUSION-COEFFICIENT OF HEMOGLOBIN
    MINTON, AP
    ROSS, PD
    JOURNAL OF PHYSICAL CHEMISTRY, 1978, 82 (17): : 1934 - 1938
  • [34] Concentration dependence of interstitial diffusion coefficient in disordered alloys
    Smirnov, LI
    PHYSICS OF METALS AND METALLOGRAPHY, 2005, 99 (03): : 231 - 235
  • [35] CONCENTRATION-DEPENDENCE OF THE POLYMER DIFFUSION-COEFFICIENT
    WAN, W
    WHITTENBURG, SL
    MACROMOLECULES, 1986, 19 (03) : 925 - 927
  • [36] DETERMINATION OF THE DEPENDENCE OF THE DIFFUSION-COEFFICIENT ON CONCENTRATION IN EXTRACTION
    KOSHEVOI, EP
    KOSACHEV, VS
    JOURNAL OF APPLIED CHEMISTRY OF THE USSR, 1982, 55 (09): : 1918 - 1920
  • [37] Bipolar Pulsed Electrical Discharge for Decomposition of Methylene Blue in Aqueous TiO2 Nanoparticle Dispersions
    Kim, Byung Hoon
    Kim, Sun-Jae
    Chung, Minchul
    Ahn, Ho-Geun
    Lee, Heon
    Park, Sung Hoon
    Jung, Sang-Chul
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (03) : 1966 - 1969
  • [38] RELATIONSHIPS BETWEEN SKEWNESS OF DIFFUSION CURVE AND CONCENTRATION DEPENDENCE OF DIFFUSION COEFFICIENT
    KANEKO, K
    ISHIDA, SI
    MIZUNO, T
    KURA, Y
    CHEMISTRY OF HIGH POLYMERS, 1969, 26 (288): : 259 - &
  • [39] CONCENTRATION-DEPENDENCE OF A DIFFUSION-COEFFICIENT AT PHOSPHORUS DIFFUSION IN GERMANIUM
    MATSUMOTO, S
    NIIMI, T
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1978, 125 (08) : 1307 - 1309
  • [40] CONCENTRATION DEPENDENCE OF THE DIFFUSION COEFFICIENT OF WATER IN SiO2 GLASS.
    Tomozawa, Minoru
    1600, (68):