Neural modelling, control and optimisation of an industrial grinding process

被引:35
|
作者
Govindhasamy, JJ
McLoone, SF
Irwin, GW
French, JJ
Doyle, RP
机构
[1] Queens Univ Belfast, Dept Elect & Elect Engn, Intelligent Syst & Control Res Grp, Belfast BT9 5AH, Antrim, North Ireland
[2] Natl Univ Ireland Maynooth, Dept Elect Engn, Maynooth, Kildare, Ireland
[3] Seagate Technol Media Ltd, Limavady BT49 0HR, North Ireland
关键词
neural networks; nonlinear modelling; NARX models; disk grinding process; multilayer perceptrons; direct inverse model control; internal model control;
D O I
10.1016/j.conengprac.2004.11.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes the development of neural model-based control strategies for the optimisation of an industrial aluminium substrate disk grinding process. The grindstone removal rate varies considerably over a stone life and is a highly nonlinear function of process variables. Using historical grindstone performance data, a NARX-based neural network model is developed. This model is then used to implement a direct inverse controller and an internal model controller based on the process settings and previous removal rates. Preliminary plant investigations show that thickness defects can be reduced by 50% or more, compared to other schemes employed. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1243 / 1258
页数:16
相关论文
共 50 条
  • [31] Neural network modelling and multi objective optimisation of electrical discharge diamond cut-off grinding (EDDCG)
    Yadav S.K.S.
    Yadava V.
    International Journal of Abrasive Technology, 2011, 4 (04) : 346 - 362
  • [32] Optimisation of process parameters in grinding on different dimensions and perspectives
    Alagumurthi, N.
    Palaniradja, K.
    Soundararajan, V.
    International Journal of Industrial and Systems Engineering, 2008, 3 (04) : 447 - 473
  • [33] Recent advances in industrial process optimisation
    Klemes, J
    Huisingh, D
    JOURNAL OF CLEANER PRODUCTION, 2005, 13 (15) : 1369 - 1373
  • [34] Dynamic optimisation of an industrial web process
    Soufian, Majeed
    INTERNATIONAL JOURNAL OF MULTIPHYSICS, 2008, 2 (03) : 291 - 312
  • [35] New automated system for optimisation of ore grinding process
    Penzov, T
    Marinov, D
    AUTOMATION IN MINING, MINERAL AND METAL PROCESSING 1998, 1999, : 13 - 17
  • [36] Microworld approach to supervision activity modelling in industrial process control
    Asensio, PP
    Boladeras, MD
    HCI RELATED PAPERS OF INTERACCION 2004, 2006, : 229 - +
  • [37] Grinding and classification performance evaluation and modelling of an industrial-scale horizontal roller mill process
    Genc, Omurden
    ZKG INTERNATIONAL, 2016, 69 (03): : 58 - 64
  • [38] Bayesian hierarchical modelling for process optimisation
    Ouyang, Linhan
    Park, Chanseok
    Ma, Yan
    Ma, Yizhong
    Wang, Min
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2021, 59 (15) : 4649 - 4669
  • [39] Modelling and optimisation of hull erection process
    Zhang, Yongquan
    Xu, Kelin
    Yu, Jinwei
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2011, 49 (13) : 4157 - 4174
  • [40] Modelling and optimisation of a semibatch polymerisation process
    Dietzsch, L
    Fischer, I
    Machefer, S
    Ladwig, HJ
    EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING - 13, 2003, 14 : 635 - 640