Neural modelling, control and optimisation of an industrial grinding process

被引:35
|
作者
Govindhasamy, JJ
McLoone, SF
Irwin, GW
French, JJ
Doyle, RP
机构
[1] Queens Univ Belfast, Dept Elect & Elect Engn, Intelligent Syst & Control Res Grp, Belfast BT9 5AH, Antrim, North Ireland
[2] Natl Univ Ireland Maynooth, Dept Elect Engn, Maynooth, Kildare, Ireland
[3] Seagate Technol Media Ltd, Limavady BT49 0HR, North Ireland
关键词
neural networks; nonlinear modelling; NARX models; disk grinding process; multilayer perceptrons; direct inverse model control; internal model control;
D O I
10.1016/j.conengprac.2004.11.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes the development of neural model-based control strategies for the optimisation of an industrial aluminium substrate disk grinding process. The grindstone removal rate varies considerably over a stone life and is a highly nonlinear function of process variables. Using historical grindstone performance data, a NARX-based neural network model is developed. This model is then used to implement a direct inverse controller and an internal model controller based on the process settings and previous removal rates. Preliminary plant investigations show that thickness defects can be reduced by 50% or more, compared to other schemes employed. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1243 / 1258
页数:16
相关论文
共 50 条
  • [1] Neural Fuzzy Prediction Control of an Industrial Grinding Process
    Ding Ning
    Zhang Dingtong
    Liu Xintong
    2007 SECOND INTERNATIONAL CONFERENCE ON BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS, 2007, : 221 - +
  • [2] Neural modelling and prediction of a disk grinding process
    Govindhasamy, JJ
    McLoone, SF
    Irwin, GW
    French, JJ
    Doyle, RP
    INTELLIGENT CONTROL SYSTEMS AND SIGNAL PROCESSING 2003, 2003, : 135 - 140
  • [3] Artificial neural networks for modelling and predictive control of an industrial evaporation process
    Benne, M
    Grondin-Perez, B
    Chabriat, JP
    Hervé, P
    JOURNAL OF FOOD ENGINEERING, 2000, 46 (04) : 227 - 234
  • [4] Recurrent neural networks based modelling of industrial grinding operation
    Inapakurthi, Ravi Kiran
    Miriyala, Srinivas Soumitri
    Mitra, Kishalay
    CHEMICAL ENGINEERING SCIENCE, 2020, 219
  • [5] Parametric modelling and control of the robotic grinding process
    Dai, H.
    Yuen, K. M.
    Elbestawi, M. A.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 1993, 8 (03): : 182 - 192
  • [6] Grinding classification circuits modelling for the process control
    Chuk, D.
    Ciribeni, V.
    Sarquis, P.
    Informacion Tecnologica, 1998, 9 (05): : 159 - 164
  • [7] Optimisation of industrial cement grinding circuits
    Ergin, H
    Acaroglu, Ö
    EURO CERAMICS VIII, PTS 1-3, 2004, 264-268 : 2173 - 2176
  • [8] Modelling and optimisation of an industrial batch process for the production of dioctyl phthalate
    Ishikawa, T
    Natori, Y
    Liberis, L
    Pantelides, CC
    COMPUTERS & CHEMICAL ENGINEERING, 1997, 21 : S1239 - S1244
  • [9] Neurocomputing approach for real time optimisation modelling of an industrial process
    Yusof, KM
    Karray, F
    Douglas, PL
    2001 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS PROCEEDINGS, VOLS I AND II, 2001, : 383 - 388
  • [10] Empirical modelling and optimisation of precision grinding
    Krajnik, P
    Kopac, J
    AMST '05: Advanced Manufacturing Systems and Technology, Proceedings, 2005, (486): : 201 - 210