Deep Feature Aggregation Framework Driven by Graph Convolutional Network for Scene Classification in Remote Sensing

被引:132
|
作者
Xu, Kejie [1 ]
Huang, Hong [1 ,2 ]
Deng, Peifang [1 ]
Li, Yuan [1 ]
机构
[1] Chongqing Univ, Key Lab Optoelect Technol & Syst, Educ Minist China, Chongqing 400044, Peoples R China
[2] Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Nonhomogeneous media; Learning systems; Deep learning; Data mining; Data models; Transfer learning; Deep transfer learning (DTL); feature aggregation; graph learning; remote sensing (RS); scene classification; NEURAL-NETWORKS; REPRESENTATION; RECOGNITION; ATTENTION; IMAGERY;
D O I
10.1109/TNNLS.2021.3071369
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scene classification of high spatial resolution (HSR) images can provide data support for many practical applications, such as land planning and utilization, and it has been a crucial research topic in the remote sensing (RS) community. Recently, deep learning methods driven by massive data show the impressive ability of feature learning in the field of HSR scene classification, especially convolutional neural networks (CNNs). Although traditional CNNs achieve good classification results, it is difficult for them to effectively capture potential context relationships. The graphs have powerful capacity to represent the relevance of data, and graph-based deep learning methods can spontaneously learn intrinsic attributes contained in RS images. Inspired by the abovementioned facts, we develop a deep feature aggregation framework driven by graph convolutional network (DFAGCN) for the HSR scene classification. First, the off-the-shelf CNN pretrained on ImageNet is employed to obtain multilayer features. Second, a graph convolutional network-based model is introduced to effectively reveal patch-to-patch correlations of convolutional feature maps, and more refined features can be harvested. Finally, a weighted concatenation method is adopted to integrate multiple features (i.e., multilayer convolutional features and fully connected features) by introducing three weighting coefficients, and then a linear classifier is employed to predict semantic classes of query images. Experimental results performed on the UCM, AID, RSSCN7, and NWPU-RESISC45 data sets demonstrate that the proposed DFAGCN framework obtains more competitive performance than some state-of-the-art methods of scene classification in terms of OAs.
引用
收藏
页码:5751 / 5765
页数:15
相关论文
共 50 条
  • [41] Remote Sensing Image Scene Classification Based on SURF Feature and Deep Learning
    Liang, Jinxiang
    Dang, Jianwu
    Wang, Yangping
    Yang, Jingyu
    Zhang, Zhenhai
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 1128 - 1133
  • [42] Remote sensing image scene classification using deep combinative feature learning
    Min, Lei
    Gao, Kun
    Wang, Hong
    Wang, Junwei
    Yu, Peilin
    Li, Ting
    Chen, Zhuoyi
    AOPC 2020: OPTICAL SENSING AND IMAGING TECHNOLOGY, 2020, 11567
  • [43] Deep feature representations for high-resolution remote sensing scene classification
    Zhou, Weixun
    Shao, Zhenfeng
    Cheng, Qimin
    2016 4RTH INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS (EORSA), 2016,
  • [44] SGMNet: Scene Graph Matching Network for Few-Shot Remote Sensing Scene Classification
    Zhang, Baoquan
    Feng, Shanshan
    Li, Xutao
    Ye, Yunming
    Ye, Rui
    Luo, Chen
    Jiang, Hao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [45] Deep convolutional neural network structure design for remote sensing image scene classification based on transfer learning
    Zhang, Xiaoxia
    Guo, Yong
    Zhang, Xia
    2020 THIRD INTERNATIONAL WORKSHOP ON ENVIRONMENT AND GEOSCIENCE, 2020, 569
  • [46] Graph convolutional network for multi-label VHR remote sensing scene recognition
    Khan, Nagma
    Chaudhuri, Ushasi
    Banerjee, Biplab
    Chaudhuri, Subhasis
    NEUROCOMPUTING, 2019, 357 : 36 - 46
  • [47] A Hierarchical Graph-Enhanced Transformer Network for Remote Sensing Scene Classification
    Li, Ziwei
    Xu, Weiming
    Yang, Shiyu
    Wang, Juan
    Su, Hua
    Huang, Zhanchao
    Wu, Sheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 20315 - 20330
  • [48] SAGN: Semantic-Aware Graph Network for Remote Sensing Scene Classification
    Yang, Yuqun
    Tang, Xu
    Cheung, Yiu-Ming
    Zhang, Xiangrong
    Jiao, Licheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 1011 - 1025
  • [49] Scene Classification of Optical High-resolution Remote Sensing Images Using Vision Transformer and Graph Convolutional Network
    Wang Jianan
    Gao Yue
    Shi Jun
    Liu Ziqi
    ACTA PHOTONICA SINICA, 2021, 50 (11)
  • [50] MGML: Multigranularity Multilevel Feature Ensemble Network for Remote Sensing Scene Classification
    Zhao, Qi
    Lyu, Shuchang
    Li, Yuewen
    Ma, Yujing
    Chen, Lijiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (05) : 2308 - 2322