A Feynman-Kac formula for anticommuting Brownian motion

被引:1
|
作者
Leppard, S [1 ]
Rogers, A [1 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
来源
关键词
D O I
10.1088/0305-4470/34/3/315
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by application to quantum physics, anticommuting analogues of Wiener measure and Brownian motion are constructed. The corresponding Ito integrals are defined and the existence and uniqueness of solutions to a class of stochastic differential equations is established. This machinery is used to provide a Feynman-Kac formula for a class of Hamiltonians. Several specific examples are considered.
引用
收藏
页码:555 / 568
页数:14
相关论文
共 50 条
  • [11] SOME REMARKS ON THE FEYNMAN-KAC FORMULA
    BRZEZNIAK, Z
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (01) : 105 - 107
  • [12] A Feynman-Kac formula for magnetic monopoles
    Dimock, J.
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2021, 24 (02)
  • [13] A Feynman-Kac formula for geometric quantization
    郭懋正
    钱敏
    王正栋
    Science China Mathematics, 1996, (03) : 238 - 245
  • [14] Measurable processes and the Feynman-Kac formula
    Jefferies, Brian
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (01): : 296 - 306
  • [15] A REMARK ON GENERALIZED FEYNMAN-KAC FORMULA
    BRIAND, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (10): : 1315 - 1318
  • [16] The Feynman-Kac Formula and Excursion Theory
    Yen, Ju-Yi
    Yor, Marc
    LOCAL TIMES AND EXCURSION THEORY FOR BROWNIAN MOTION: A TALE OF WIENER AND ITO MEASURES, 2013, 2088 : 107 - 110
  • [17] Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion
    Hu, Mingshang
    Ji, Shaolin
    Peng, Shige
    Song, Yongsheng
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (02) : 1170 - 1195
  • [18] A Feynman-Kac formula for geometric quantization
    Guo, MZ
    Qian, M
    Wang, ZD
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1996, 39 (03): : 238 - 245
  • [19] First order Feynman-Kac formula
    Li, Xue-Mei
    Thompson, James
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (09) : 3006 - 3029
  • [20] Quantum white noise Feynman-Kac formula
    Ettaieb, Aymen
    Khalifa, Narjess Turki
    Ouerdiane, Habib
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2018, 26 (02) : 75 - 87