Is Monte Carlo uncertainty a good predictor of manual adjustments of deep-learning contours?

被引:0
|
作者
Ionescu, G. [1 ]
Looney, P. [1 ]
Willaime, J. M. Y. [1 ]
Vaasen, F. [2 ]
van Elmpt, W. [2 ]
Gooding, M. J. [1 ]
机构
[1] Mirada Med, Sci, Oxford, England
[2] Maastro Clin, Med Phys, Maastricht, Netherlands
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
MO-0213
引用
收藏
页码:S169 / S170
页数:2
相关论文
共 50 条
  • [21] CBCT-to-CT Deep-learning generation with uncertainty map predictions
    Hemon, Cedric
    Lafond, Caroline
    Barateau, Anais
    Texier, Blanche
    Castelli, Joel
    de Crevoisier, Renaud
    Nunes, Jean-Claude
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S4545 - S4548
  • [22] Bayesian updating for data adjustments and multi-level uncertainty propagation within Total Monte Carlo
    Alhassan, E.
    Rochman, D.
    Sjostrand, H.
    Vasiliev, A.
    Koning, A. J.
    Ferroukhi, H.
    ANNALS OF NUCLEAR ENERGY, 2020, 139
  • [23] Improving the repeatability of deep learning models with Monte Carlo dropout
    Lemay, Andreanne
    Hoebel, Katharina
    Bridge, Christopher P.
    Befano, Brian
    De Sanjose, Silvia
    Egemen, Didem
    Rodriguez, Ana Cecilia
    Schiffman, Mark
    Campbell, John Peter
    Kalpathy-Cramer, Jayashree
    NPJ DIGITAL MEDICINE, 2022, 5 (01)
  • [24] A survey on deep learning-based Monte Carlo denoising
    Huo, Yuchi
    Yoon, Sung-eui
    COMPUTATIONAL VISUAL MEDIA, 2021, 7 (02) : 169 - 185
  • [25] Fast Monte Carlo dose calculation based on deep learning
    Fu, Jiaqi
    Bai, Jingfeng
    Liu, Yanfang
    Ni, Cheng
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 721 - 726
  • [26] Application of Monte Carlo stochastic optimization (MOST) to deep learning
    Inage, Sin-ichi
    Hebishima, Hana
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 199 : 257 - 271
  • [27] A survey on deep learning-based Monte Carlo denoising
    Yuchi Huo
    Sung-eui Yoon
    ComputationalVisualMedia, 2021, 7 (02) : 169 - 185
  • [28] A survey on deep learning-based Monte Carlo denoising
    Yuchi Huo
    Sung-eui Yoon
    Computational Visual Media, 2021, 7 : 169 - 185
  • [29] Improving the repeatability of deep learning models with Monte Carlo dropout
    Andreanne Lemay
    Katharina Hoebel
    Christopher P. Bridge
    Brian Befano
    Silvia De Sanjosé
    Didem Egemen
    Ana Cecilia Rodriguez
    Mark Schiffman
    John Peter Campbell
    Jayashree Kalpathy-Cramer
    npj Digital Medicine, 5
  • [30] Self-learning Monte Carlo with deep neural networks
    Shen, Huitao
    Liu, Junwei
    Fu, Liang
    PHYSICAL REVIEW B, 2018, 97 (20)