Is Monte Carlo uncertainty a good predictor of manual adjustments of deep-learning contours?

被引:0
|
作者
Ionescu, G. [1 ]
Looney, P. [1 ]
Willaime, J. M. Y. [1 ]
Vaasen, F. [2 ]
van Elmpt, W. [2 ]
Gooding, M. J. [1 ]
机构
[1] Mirada Med, Sci, Oxford, England
[2] Maastro Clin, Med Phys, Maastricht, Netherlands
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
MO-0213
引用
收藏
页码:S169 / S170
页数:2
相关论文
共 50 条
  • [1] Sequential Monte Carlo learning with hyperparameter adjustments
    Wada, K
    Yosui, K
    Nakada, Y
    Matsumoto, T
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 274 - 279
  • [2] Efficient Monte Carlo simulation of streamer discharges with deep-learning denoising models
    Bayo-Munoz, F. M.
    Malagon-Romero, A.
    Luque, A.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2025, 6 (01):
  • [3] Assessing the uncertainty of deep learning soil spectral models using Monte Carlo dropout
    Padarian, J.
    Minasny, B.
    McBratney, A.B.
    Geoderma, 2022, 425
  • [4] Assessing the uncertainty of deep learning soil spectral models using Monte Carlo dropout
    Padarian, J.
    Minasny, B.
    McBratney, A. B.
    GEODERMA, 2022, 425
  • [5] The Effect of Training Data Quantity on Monte Carlo Dropout Uncertainty Quantification in Deep Learning
    Cusack, Harrison
    Bialkowski, Alina
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [6] No need for manual adjustments of deep learning segmentation in oropharyngeal cancer?
    van de Glind, H.
    van Bruggen, I. G.
    Langendijk, J. A.
    Both, S.
    Brouwer, C. L.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S474 - S475
  • [7] Deep Learning Quantum Monte Carlo for Solids
    Qian, Yubing
    Li, Xiang
    Li, Zhe
    Ren, Weiluo
    Chen, Ji
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2025, 15 (02)
  • [8] An Improved Penalty-Based Excited-State Variational Monte Carlo Approach with Deep-Learning Ansatzes
    Szabo, P. Bernat
    Schaetzle, Zeno
    Entwistle, Michael T.
    Noe, Frank
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (18) : 7922 - 7935
  • [9] DeepSA: a deep-learning driven predictor of compound synthesis accessibility
    Wang, Shihang
    Wang, Lin
    Li, Fenglei
    Bai, Fang
    JOURNAL OF CHEMINFORMATICS, 2023, 15 (01)
  • [10] DeepSA: a deep-learning driven predictor of compound synthesis accessibility
    Shihang Wang
    Lin Wang
    Fenglei Li
    Fang Bai
    Journal of Cheminformatics, 15