A nonadaptive NC checker for permutation group intersection

被引:3
|
作者
Arvind, V
Torán, J
机构
[1] Inst Math Sci, Dept Comp Sci, Chennai 600113, India
[2] Univ Ulm, D-89069 Ulm, Germany
关键词
program checking; parallel algorithms; interactive proofs; permutation groups;
D O I
10.1016/S0304-3975(00)00159-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We design a nonadaptive NC checker for permutation group intersection, sharpening a result of Blum and Kannan (J. ACM 43 (1995) 269-291). Additionally, we also get non-adaptive NC checkers for some related group-theoretic problems. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:597 / 611
页数:15
相关论文
共 50 条
  • [21] Optimizing nonadaptive group tests for objects with heterogeneous priors
    Bruno, WJ
    Sun, F
    Torney, DC
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (04) : 1043 - 1059
  • [22] When is individual testing optimal for nonadaptive group testing?
    Huang, SH
    Hwang, FK
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2001, 14 (04) : 540 - 548
  • [23] Bounds for Nonadaptive Group Tests to Estimate the Amount of Defectives
    Damaschke, Peter
    Muhammad, Azam Sheikh
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PT II, 2010, 6509 : 117 - 130
  • [24] Strongly separable matrices for nonadaptive combinatorial group testing
    Fan, Jinping
    Fu, Hung-Lin
    Gu, Yujie
    Miao, Ying
    Shigeno, Maiko
    DISCRETE APPLIED MATHEMATICS, 2021, 291 : 180 - 187
  • [25] BOUNDS FOR NONADAPTIVE GROUP TESTS TO ESTIMATE THE AMOUNT OF DEFECTIVES
    Damaschke, Peter
    Muhammad, Azam Sheikh
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2011, 3 (04) : 517 - 536
  • [26] Linear Matroid Intersection is in Quasi-NC
    Rohit Gurjar
    Thomas Thierauf
    computational complexity, 2020, 29
  • [27] On the movement of a permutation group
    Neumann, PM
    Praeger, CE
    JOURNAL OF ALGEBRA, 1999, 214 (02) : 631 - 635
  • [28] Linear Matroid Intersection Is in Quasi-NC
    Gurjar, Rohit
    Thierauf, Thomas
    STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, : 821 - 830
  • [29] LINEAR MATROID INTERSECTION IS IN QUASI-NC
    Gurjar, Rohit
    Thierauf, Thomas
    COMPUTATIONAL COMPLEXITY, 2020, 29 (02)
  • [30] Nonadaptive group testing with lies: Probabilistic existence theorems
    Zhigljavsky, Anatoly
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (10) : 2885 - 2893