Response of runoff components to climate change in the source-region of the Yellow River on the Tibetan plateau

被引:33
|
作者
Zhang, Ting [1 ]
Li, Dongfeng [1 ]
Lu, Xixi [1 ]
机构
[1] Natl Univ Singapore, Dept Geog, Singapore 117570, Singapore
关键词
climate change; permafrost thaw; response mechanism; runoff components; source-region of Yellow River; PERMAFROST DEGRADATION; HEADWATER REGION; IMPACTS; FROZEN; ASIA; HYDROLOGY; MODEL; BASIN;
D O I
10.1002/hyp.14633
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Climate change will likely increase the total streamflow in most headwaters on the Tibetan Plateau in the next decades, yet the response of runoff components to climate change and permafrost thaw remain largely uncertain. Here, we investigate the changes in runoff components under a changing climate, based on a high-resolution cryosphere-hydrology model (Spatial Processes in Hydrology model, SPHY) and multi-decadal streamflow observations at the upstream (Jimai) and downstream stations (Maqu and Tangnaihai) in the source-region of the Yellow River (SYR). We find that rainfall flow dominates the runoff regime in SYR (contributions of 48%-56%), followed by snowmelt flow (contributions of 26%/23% at Maqu/Tangnaihai). Baseflow is more important at Jimai (32%) than at the the downstream stations (21%-23%). Glacier meltwater from the Anye Maqen and Bayankala Mountains contributes negligibly to the downstream total runoff. With increasing temperature and precipitation, the increase in total runoff is smaller in the warm and wet downstream stations than in the cold and dry upstream station. This is because of a higher increase in evapotranspiration and a larger reduction in snowmelt flow in the downstream region in response to a warming climate. With temperature increase, there is less increase in rainfall flow in the downstream region due to increased water loss through evapotranspiration. Meanwhile, the decline in snowmelt flow is larger further downstream, which can negatively impact the spring irrigation for the whole Yellow River basin that supports the livelihoods of 140 million people. Importantly, we find that baseflow plays an increasingly important role in the permafrost-dominated upstream region with atmospheric warming and permafrost thaw, accompanied by decreased surface flow. These findings improve our current understanding of how different hydrological processes respond to climate change and provide insights for optimizing hydropower and irrigation systems in the entire Yellow River basin under a rapidly changing climate.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] The response of river discharge to climate fluctuations in the source region of the Yellow River
    Jianfeng Zhang
    Guomin Li
    S. Liang
    Environmental Earth Sciences, 2012, 66 : 1505 - 1512
  • [22] Impacts of climate change on runoff in the Yellow River
    Lyu, Jiqiang
    Zhang Zezhong
    Shen, Bing
    JOURNAL AMERICAN WATER WORKS ASSOCIATION, 2014, 106 (05): : E225 - E232
  • [23] Seasonal Variations in Dissolved Organic Carbon in the Source Region of the Yellow River on the Tibetan Plateau
    You, Xiaoni
    Li, Xiangying
    WATER, 2021, 13 (20)
  • [24] Response of Streamflow to Future Land Use and Cover Change and Climate Change in the Source Region of the Yellow River
    Zhan, Hao
    Zhang, Jiang
    Wang, Le
    Yu, Dongxue
    Xu, Min
    Zhu, Qiuan
    WATER, 2024, 16 (10)
  • [25] Spatiotemporal responses of runoff to climate change in the southern Tibetan Plateau
    Sun, He
    Yao, Tandong
    Su, Fengge
    Yang, Wei
    Chen, Deliang
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2024, 28 (18) : 4361 - 4381
  • [26] Impacts of climate change on hydrology in the Yellow River source region, China
    Jin, Junliang
    Wang, Guoqing
    Zhang, Jianyun
    Yang, Qinli
    Liu, Cuishan
    Liu, Yanli
    Bao, Zhenxin
    He, Ruimin
    JOURNAL OF WATER AND CLIMATE CHANGE, 2020, 11 (03) : 916 - 930
  • [27] Hydrological projections of future climate change over the source region of Yellow River and Yangtze River in the Tibetan Plateau: A comprehensive assessment by coupling RegCM4 and VIC model
    Lu, Wenjun
    Wang, Weiguang
    Shao, Quanxi
    Yu, Zhongbo
    Hao, Zhenchun
    Xing, Wanqiu
    Yong, Bin
    Li, Jinxing
    HYDROLOGICAL PROCESSES, 2018, 32 (13) : 2096 - 2117
  • [28] Climate transformation to warm-humid and its effect on river runoff in the source region of the Yellow River
    YongChao Lan
    HuiJun Jin
    ChengFang La
    Jun Wen
    Jie Song
    JinPeng Liu
    Sciences in Cold and Arid Regions, 2014, 6 (03) : 257 - 265
  • [29] Climate change impacts on seasonal runoff in the source region of the Yellow River: Insights from CORDEX experiments with uncertainty analysis
    Gao, Yiyan
    Zhou, Minpei
    Yu, Zhongbo
    Ju, Qin
    Jin, Junliang
    Zhang, Dawei
    JOURNAL OF HYDROLOGY, 2024, 645
  • [30] Variation of Runoff and Runoff Components of the Lhasa River Basin in the Qinghai-Tibet Plateau under Climate Change
    Xiang, Xin
    Ao, Tianqi
    Xiao, Qintai
    ATMOSPHERE, 2022, 13 (11)