Potential landscape of the Van der Pol oscillator

被引:0
|
作者
Lu, Qiang [1 ]
Yue, Chao [1 ]
Zhang, Zhaochen [1 ]
机构
[1] Shandong First Med Univ & Shandong Acad Med Sci, Coll Med Informat Engn, Tai An, Shandong, Peoples R China
关键词
Van der Pol oscillator; Limit cycle; Potential landscape; ENERGY LANDSCAPE; ROBUSTNESS;
D O I
10.1109/IHMSC.2019.00020
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Van der Pol system is one of the simplest forms of nonlinear oscillators and used as a model of central pattern generator for robot control. In this paper, the potential landscape is used to quantify the dynamic characteristics of the Van der Pol system. Through probability evolution for a long time using Fokker-Planck equation, the dynamic change trend of the limit cycle is shown in three- dimensional. The result shows that the change trend of the barrier height is from increase to decrease, and from increase to decrease along the limit cycle from the start point. This conclusion can explain the potential energy change of the compass-like robot.
引用
收藏
页码:51 / 54
页数:4
相关论文
共 50 条
  • [31] On limit cycle approximations in the van der Pol oscillator
    Padín, MS
    Robbio, FI
    Moiola, JL
    Chen, GR
    CHAOS SOLITONS & FRACTALS, 2005, 23 (01) : 207 - 220
  • [32] On the Formation of Feedbacks in the Van der Pol Spatial Oscillator
    V. F. Zhuravlev
    Mechanics of Solids, 2020, 55 : 926 - 931
  • [33] Dynamics of a simplified van der Pol oscillator revisited
    Luo, Albert C. J.
    Rajendran, Arun
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINERING CONGRESS AND EXPOSITION 2007, VOL 9, PTS A-C: MECHANICAL SYSTEMS AND CONTROL, 2008, : 1885 - 1892
  • [34] Critical Response of a Quantum van der Pol Oscillator
    Dutta, Shovan
    Cooper, Nigel R.
    PHYSICAL REVIEW LETTERS, 2019, 123 (25)
  • [35] Van der Pol Oscillator. Technical Applications
    Zhuravlev, V. Ph.
    MECHANICS OF SOLIDS, 2020, 55 (01) : 132 - 137
  • [36] Van der Pol oscillator with time variable parameters
    L. Cveticanin
    Acta Mechanica, 2013, 224 : 945 - 955
  • [37] The Buffer Phenomenon in the Van Der Pol Oscillator with Delay
    A. Yu. Kolesov
    N. Kh. Rozov
    Differential Equations, 2002, 38 : 175 - 186
  • [38] The existence of closed trajectory in the van der Pol oscillator
    Wang, D
    Zhou, SB
    Yu, JB
    2002 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS AND WEST SINO EXPOSITION PROCEEDINGS, VOLS 1-4, 2002, : 1629 - 1632
  • [39] Parametric excitation for forcing van der Pol oscillator
    Abd El-Latif, GM
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (01) : 255 - 265
  • [40] Van der Pol oscillator with time variable parameters
    Cveticanin, L.
    ACTA MECHANICA, 2013, 224 (05) : 945 - 955