Machine Learning-Based Production Prediction Model and Its Application in Duvernay Formation

被引:12
|
作者
Guo, Zekun [1 ]
Wang, Hongjun [1 ]
Kong, Xiangwen [1 ]
Li Shen [1 ]
Jia, Yuepeng [1 ]
机构
[1] Res Inst Petr Explorat & Dev CNPC, Beijing 100083, Peoples R China
关键词
machine learning; sensitivity analysis; production prediction; grey relation analysis; RESERVOIRS; INSIGHTS;
D O I
10.3390/en14175509
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The production of a single gas well is influenced by many geological and completion factors. The aim of this paper is to build a production prediction model based on machine learning technique and identify the most important factor for production. Firstly, around 159 horizontal wells were collected, targeting the Duvernay Formation with detailed geological and completion records. Secondly, the key factors were selected using grey relation analysis and Pearson correlation. Then, three statistical models were built through multiple linear regression (MLR), support vector regression (SVR), gaussian process regression (GPR). The model inputs include fluid volume, proppant amount, cluster counts, stage counts, total horizontal lateral length, gas saturation, total organic carbon content, condensate-gas ratio. The model performance was assessed by root mean squared errors (RMSE) and R-squared value. Finally, sensitivity analysis was applied based on best performance model. The analysis shows following conclusions: (1) GPR model shows the best performance with the highest R-squared value and the lowest RMSE. In the testing set, the model shows a R-squared of 0.8 with a RMSE of 280.54 x 10(4) m(3) in the prediction of cumulative gas production within 1st 6 producing months and gives a R-squared of 0.83 with a RMSE of 1884.3 t in the prediction of cumulative oil production within 1st 6 producing months (2) Sensitivity analysis based on GPR model indicates that condensate-gas ratio, fluid volume, and total organic carbon content are the most important features to cumulative oil production within 1st 6 producing months. Fluid volume, Stages, and total organic carbon content are the most significant factors to cumulative gas production within 1st 6 producing months. The analysis progress and results developed in this study will assist companies to build prediction models and figure out which factors control well performance.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Machine Learning-Based Prediction of Air Quality
    Liang, Yun-Chia
    Maimury, Yona
    Chen, Angela Hsiang-Ling
    Juarez, Josue Rodolfo Cuevas
    APPLIED SCIENCES-BASEL, 2020, 10 (24): : 1 - 17
  • [42] Practical Machine Learning-Based Sepsis Prediction
    Pettinati, Michael J.
    Chen, Gengbo
    Rajput, Kuldeep Singh
    Selvaraj, Nandakumar
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 4986 - 4991
  • [43] A MACHINE LEARNING-BASED TOURIST PATH PREDICTION
    Zheng, Siwen
    Liu, Yu
    Ouyang, Zhenchao
    PROCEEDINGS OF 2016 4TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (IEEE CCIS 2016), 2016, : 38 - 42
  • [44] Machine learning-based prediction of enzyme substrate scope: Application to bacterial nitrilases
    Mou, Zhongyu
    Eakes, Jason
    Cooper, Connor J.
    Foster, Carmen M.
    Standaert, Robert F.
    Podar, Mircea
    Doktycz, Mitchel J.
    Parks, Jerry M.
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2021, 89 (03) : 336 - 347
  • [45] Prediction of Shale-Gas Production at Duvernay Formation Using Deep-Learning Algorithm
    Lee, Kyungbook
    Lim, Jungtek
    Yoon, Daeung
    Jung, Hyungsik
    SPE JOURNAL, 2019, 24 (06): : 2423 - 2437
  • [46] Application of a Fusion Model Based on Machine Learning in Visibility Prediction
    Zhen, Maochan
    Yi, Mingjian
    Luo, Tao
    Wang, Feifei
    Yang, Kaixuan
    Ma, Xuebin
    Cui, Shengcheng
    Li, Xuebin
    REMOTE SENSING, 2023, 15 (05)
  • [47] Construction and verification of a machine learning-based prediction model of deep vein thrombosis formation after spinal surgery
    Wu, Xingyan
    Wang, Zhao
    Zheng, Leilei
    Yang, Yihui
    Shi, Wenyan
    Wang, Jing
    Liu, Dexing
    Zhang, Yi
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2024, 192
  • [48] A Novel Shale Gas Production Prediction Model Based on Machine Learning and Its Application in Optimization of Multistage Fractured Horizontal Wells
    Wang, Huijun
    Qiao, Lu
    Lu, Shuangfang
    Chen, Fangwen
    Fang, Zhixiong
    He, Xipeng
    Zhang, Jun
    He, Taohua
    FRONTIERS IN EARTH SCIENCE, 2021, 9
  • [49] Prediction Technology of a Reservoir Development Model While Drilling Based on Machine Learning and Its Application
    Wang, Xin
    Mao, Min
    Yang, Yi
    Yuan, Shengbin
    Guo, Mingyu
    Li, Hongru
    Cheng, Leli
    Wang, Heng
    Ye, Xiaobin
    PROCESSES, 2024, 12 (05)
  • [50] A Flu prediction model based on machine learning algorithms and its application in public health decisions
    Zhang, Ruirui
    WIENER KLINISCHE WOCHENSCHRIFT, 2023, 135 : S819 - S819