Highly structured slow solar wind emerging from an equatorial coronal hole

被引:376
|
作者
Bale, S. D. [1 ,2 ,3 ,4 ]
Badman, S. T. [1 ,2 ]
Bonnell, J. W. [1 ]
Bowen, T. A. [1 ]
Burgess, D. [4 ]
Case, A. W. [5 ]
Cattell, C. A. [6 ]
Chandran, B. D. G. [7 ,8 ]
Chaston, C. C. [1 ]
Chen, C. H. K. [4 ]
Drake, J. F. [9 ,10 ,11 ]
De Wit, T. Dudok [12 ]
Eastwood, J. P. [3 ]
Ergun, R. E. [13 ]
Farrell, W. M. [14 ]
Fong, C. [1 ,12 ]
Goetz, K. [6 ]
Goldstein, M. [15 ,16 ]
Goodrich, K. A. [1 ]
Harvey, P. R. [1 ]
Horbury, T. S. [3 ]
Howes, G. G. [17 ]
Kasper, J. C. [5 ,18 ]
Kellogg, P. J. [6 ]
Klimchuk, J. A. [19 ]
Korreck, K. E. [5 ]
Krasnoselskikh, V. V. [12 ]
Krucker, S. [1 ,20 ]
Laker, R. [3 ]
Larson, D. E.
MacDowall, R. J.
Maksimovic, M. [21 ]
Malaspina, D. M.
Martinez-Oliveros, J. [1 ]
McComas, D. J. [22 ]
Meyer-Vernet, N. [21 ]
Moncuquet, M. [21 ]
Mozer, F. S. [1 ]
Phan, T. D. [1 ]
Pulupa, M. [1 ]
Raouafi, N. E. [23 ]
Salem, C. [1 ]
Stansby, D. [3 ]
Stevens, M. [5 ]
Szabo, A. [19 ]
Velli, M. [24 ]
Woolley, T. [3 ]
Wygant, J. R. [6 ]
机构
[1] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Imperial Coll London, Blackett Lab, London, England
[4] Queen Mary Univ London, Sch Phys & Astron, London, England
[5] Smithsonian Astrophys Observ, Cambridge, MA USA
[6] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[7] Univ New Hampshire, Dept Phys & Astron, Durham, NH 03824 USA
[8] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA
[9] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[10] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[11] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA
[12] Univ Orleans, LPC2E, CNRS, Orleans, France
[13] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA
[14] NASA, Goddard Space Flight Ctr, Code 695, Greenbelt, MD USA
[15] Univ Maryland Baltimore Cty, Goddard Planetary Heliophys Inst, Baltimore, MD 21228 USA
[16] NASA, Goddard Space Flight Ctr, Code 672, Greenbelt, MD USA
[17] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[18] Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[19] NASA, Goddard Space Flight Ctr, Heliophys Div, Greenbelt, MD USA
[20] Univ Appl Sci & Arts Northwestern Switzerland, Windisch, Switzerland
[21] Sorbonne Univ, CNRS, Univ PSL, LESIA,Observ Paris, Meudon, France
[22] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[23] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA
[24] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA
关键词
MAGNETIC-FIELD; INTERPLANETARY; MODEL; MISSION; WAVES;
D O I
10.1038/s41586-019-1818-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
During the solar minimum, when the Sun is at its least active, the solar wind(1,2) is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfvenic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind(3) of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain(4); theories and observations suggest that they may originate at the tips of helmet streamers(5,6), from interchange reconnection near coronal hole boundaries(7,8), or within coronal holes with highly diverging magnetic fields(9,10). The heating mechanism required to drive the solar wind is also unresolved, although candidate mechanisms include Alfven-wave turbulence(11,12), heating by reconnection in nanoflares(13), ion cyclotron wave heating(14) and acceleration by thermal gradients1. At a distance of one astronomical unit, the wind is mixed and evolved, and therefore much of the diagnostic structure of these sources and processes has been lost. Here we present observations from the Parker Solar Probe(15) at 36 to 54 solar radii that show evidence of slow Alfvenic solar wind emerging from a small equatorial coronal hole. The measured magnetic field exhibits patches of large, intermittent reversals that are associated with jets of plasma and enhanced Poynting flux and that are interspersed in a smoother and less turbulent flow with a near-radial magnetic field. Furthermore, plasma-wave measurements suggest the existence of electron and ion velocity-space micro-instabilities(10,16) that are associated with plasma heating and thermalization processes. Our measurements suggest that there is an impulsive mechanism associated with solar-wind energization and that micro-instabilities play a part in heating, and we provide evidence that low-latitude coronal holes are a key source of the slow solar wind.
引用
收藏
页码:237 / +
页数:13
相关论文
共 50 条
  • [21] Unusually low density regions in the compressed slow wind: Solar wind transients of small coronal hole origin
    Liu, Yong C. -M.
    Qi, Zhaohui
    Huang, Jia
    Wang, Chi
    Fu, Hui
    Klecker, Berndt
    Wang, Linghua
    Farrugia, Charles J.
    ASTRONOMY & ASTROPHYSICS, 2020, 635
  • [22] Coronal hole picoflare jets are progenitors of both fast and Alfvénic slow solar wind
    Chitta, L. P.
    Huang, Z.
    D'Amicis, R.
    Calchetti, D.
    Zhukov, A. N.
    Kraaikamp, E.
    Verbeeck, C.
    Cuadrado, R. Aznar
    Hirzberger, J.
    Berghmans, D.
    Horbury, T. S.
    Solanki, S. K.
    Owen, C. J.
    Harra, L.
    Peter, H.
    Schuehle, U.
    Teriaca, L.
    Louarn, P.
    Livi, S.
    Giunta, A. S.
    Hassler, D. M.
    Wang, Y. -m.
    ASTRONOMY & ASTROPHYSICS, 2025, 694
  • [23] Evolution of an equatorial coronal hole structure and the released coronal hole wind stream: Carrington rotations 2039 to 2050
    Heidrich-Meisner, Verena
    Peleikis, Thies
    Kruse, Martin
    Berger, Lars
    Wimmer-Schweingruber, Robert F.
    ASTRONOMY & ASTROPHYSICS, 2017, 603
  • [24] POLAR AND EQUATORIAL CORONAL HOLE WINDS AT SOLAR MINIMA: FROM THE HELIOSPHERE TO THE INNER CORONA
    Zhao, L.
    Landi, E.
    ASTROPHYSICAL JOURNAL, 2014, 781 (02):
  • [25] Model of solar wind flow near an equatorial coronal streamer
    Vasquez, AM
    van Ballegooijen, AA
    Raymond, JC
    SOLAR WIND NINE, 1999, 471 : 243 - 246
  • [26] Coronal Pseudostreamers: Source of Fast or Slow Solar Wind?
    Panasenco, Olga
    Velli, Marco
    PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL SOLAR WIND CONFERENCE (SOLAR WIND 13), 2013, 1539 : 50 - 53
  • [27] Active Region Modulation of Coronal Hole Solar Wind
    Macneil, Allan R.
    Owen, Christopher J.
    Baker, Deborah
    Brooks, David H.
    Harra, Louise K.
    Long, David M.
    Wicks, Robert T.
    ASTROPHYSICAL JOURNAL, 2019, 887 (02):
  • [28] Coronal hole structure and the high speed solar wind
    Holzer, TE
    Leer, E
    CORONA AND SOLAR WIND NEAR MINIMUM ACTIVITY - FIFTH SOHO WORKSHOP, 1997, 404 : 65 - 74
  • [29] Prediction of coronal-hole solar wind velocities at Ulysses from NSO/SP coronal data
    Altrock, RC
    Henry, TW
    SOLAR DRIVERS OF INTERPLANETARY AND TERRESTRIAL DISTURBANCES, 1996, 95 : 324 - 332
  • [30] Evolution from Coronal Wind to Structured Chromospheric Wind
    Suzuki, Takeru K.
    NEW QUESTS IN STELLAR ASTROPHYSICS III: A PANCHROMATIC VIEW OF SOLAR-LIKE STARS, WITH AND WITHOUT PLANETS, 2013, 472 : 247 - 252