Highly structured slow solar wind emerging from an equatorial coronal hole

被引:376
|
作者
Bale, S. D. [1 ,2 ,3 ,4 ]
Badman, S. T. [1 ,2 ]
Bonnell, J. W. [1 ]
Bowen, T. A. [1 ]
Burgess, D. [4 ]
Case, A. W. [5 ]
Cattell, C. A. [6 ]
Chandran, B. D. G. [7 ,8 ]
Chaston, C. C. [1 ]
Chen, C. H. K. [4 ]
Drake, J. F. [9 ,10 ,11 ]
De Wit, T. Dudok [12 ]
Eastwood, J. P. [3 ]
Ergun, R. E. [13 ]
Farrell, W. M. [14 ]
Fong, C. [1 ,12 ]
Goetz, K. [6 ]
Goldstein, M. [15 ,16 ]
Goodrich, K. A. [1 ]
Harvey, P. R. [1 ]
Horbury, T. S. [3 ]
Howes, G. G. [17 ]
Kasper, J. C. [5 ,18 ]
Kellogg, P. J. [6 ]
Klimchuk, J. A. [19 ]
Korreck, K. E. [5 ]
Krasnoselskikh, V. V. [12 ]
Krucker, S. [1 ,20 ]
Laker, R. [3 ]
Larson, D. E.
MacDowall, R. J.
Maksimovic, M. [21 ]
Malaspina, D. M.
Martinez-Oliveros, J. [1 ]
McComas, D. J. [22 ]
Meyer-Vernet, N. [21 ]
Moncuquet, M. [21 ]
Mozer, F. S. [1 ]
Phan, T. D. [1 ]
Pulupa, M. [1 ]
Raouafi, N. E. [23 ]
Salem, C. [1 ]
Stansby, D. [3 ]
Stevens, M. [5 ]
Szabo, A. [19 ]
Velli, M. [24 ]
Woolley, T. [3 ]
Wygant, J. R. [6 ]
机构
[1] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Imperial Coll London, Blackett Lab, London, England
[4] Queen Mary Univ London, Sch Phys & Astron, London, England
[5] Smithsonian Astrophys Observ, Cambridge, MA USA
[6] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[7] Univ New Hampshire, Dept Phys & Astron, Durham, NH 03824 USA
[8] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA
[9] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[10] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[11] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA
[12] Univ Orleans, LPC2E, CNRS, Orleans, France
[13] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA
[14] NASA, Goddard Space Flight Ctr, Code 695, Greenbelt, MD USA
[15] Univ Maryland Baltimore Cty, Goddard Planetary Heliophys Inst, Baltimore, MD 21228 USA
[16] NASA, Goddard Space Flight Ctr, Code 672, Greenbelt, MD USA
[17] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[18] Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[19] NASA, Goddard Space Flight Ctr, Heliophys Div, Greenbelt, MD USA
[20] Univ Appl Sci & Arts Northwestern Switzerland, Windisch, Switzerland
[21] Sorbonne Univ, CNRS, Univ PSL, LESIA,Observ Paris, Meudon, France
[22] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[23] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA
[24] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA
关键词
MAGNETIC-FIELD; INTERPLANETARY; MODEL; MISSION; WAVES;
D O I
10.1038/s41586-019-1818-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
During the solar minimum, when the Sun is at its least active, the solar wind(1,2) is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfvenic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind(3) of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain(4); theories and observations suggest that they may originate at the tips of helmet streamers(5,6), from interchange reconnection near coronal hole boundaries(7,8), or within coronal holes with highly diverging magnetic fields(9,10). The heating mechanism required to drive the solar wind is also unresolved, although candidate mechanisms include Alfven-wave turbulence(11,12), heating by reconnection in nanoflares(13), ion cyclotron wave heating(14) and acceleration by thermal gradients1. At a distance of one astronomical unit, the wind is mixed and evolved, and therefore much of the diagnostic structure of these sources and processes has been lost. Here we present observations from the Parker Solar Probe(15) at 36 to 54 solar radii that show evidence of slow Alfvenic solar wind emerging from a small equatorial coronal hole. The measured magnetic field exhibits patches of large, intermittent reversals that are associated with jets of plasma and enhanced Poynting flux and that are interspersed in a smoother and less turbulent flow with a near-radial magnetic field. Furthermore, plasma-wave measurements suggest the existence of electron and ion velocity-space micro-instabilities(10,16) that are associated with plasma heating and thermalization processes. Our measurements suggest that there is an impulsive mechanism associated with solar-wind energization and that micro-instabilities play a part in heating, and we provide evidence that low-latitude coronal holes are a key source of the slow solar wind.
引用
收藏
页码:237 / +
页数:13
相关论文
共 50 条
  • [1] Highly structured slow solar wind emerging from an equatorial coronal hole
    S. D. Bale
    S. T. Badman
    J. W. Bonnell
    T. A. Bowen
    D. Burgess
    A. W. Case
    C. A. Cattell
    B. D. G. Chandran
    C. C. Chaston
    C. H. K. Chen
    J. F. Drake
    T. Dudok de Wit
    J. P. Eastwood
    R. E. Ergun
    W. M. Farrell
    C. Fong
    K. Goetz
    M. Goldstein
    K. A. Goodrich
    P. R. Harvey
    T. S. Horbury
    G. G. Howes
    J. C. Kasper
    P. J. Kellogg
    J. A. Klimchuk
    K. E. Korreck
    V. V. Krasnoselskikh
    S. Krucker
    R. Laker
    D. E. Larson
    R. J. MacDowall
    M. Maksimovic
    D. M. Malaspina
    J. Martinez-Oliveros
    D. J. McComas
    N. Meyer-Vernet
    M. Moncuquet
    F. S. Mozer
    T. D. Phan
    M. Pulupa
    N. E. Raouafi
    C. Salem
    D. Stansby
    M. Stevens
    A. Szabo
    M. Velli
    T. Woolley
    J. R. Wygant
    Nature, 2019, 576 : 237 - 242
  • [2] Observations of Slow Solar Wind from Equatorial Coronal Holes
    Wang, Y-M
    Ko, Y-K
    ASTROPHYSICAL JOURNAL, 2019, 880 (02):
  • [3] Solar Wind Associated with Near Equatorial Coronal Hole
    M. Hegde
    K. M. Hiremath
    Vijayakumar H. Doddamani
    Shashanka R Gurumath
    Journal of Astrophysics and Astronomy, 2015, 36 : 355 - 374
  • [4] Solar Wind Associated with Near Equatorial Coronal Hole
    Hegde, M.
    Hiremath, K. M.
    Doddamani, Vijayakumar H.
    Gurumath, Shashanka R.
    JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2015, 36 (03) : 355 - 374
  • [5] Direct observations of a complex coronal web driving highly structured slow solar wind
    Chitta, L. P.
    Seaton, D. B.
    Downs, C.
    DeForest, C. E.
    Higginson, A. K.
    NATURE ASTRONOMY, 2023, 7 (02) : 133 - +
  • [6] Direct observations of a complex coronal web driving highly structured slow solar wind
    L. P. Chitta
    D. B. Seaton
    C. Downs
    C. E. DeForest
    A. K. Higginson
    Nature Astronomy, 2023, 7 : 133 - 141
  • [7] The small coronal hole solar wind and Alfven wave within the slow solar wind
    Qi Zhaohui
    Liu Yong
    Liu Ruoyan
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2021, 64 (11): : 3837 - 3845
  • [8] Isotopic fractionation in slow and coronal hole associated solar wind
    Kucharek, H
    Klecker, B
    Ipavich, FM
    Kallenbach, R
    Grünwaldt, H
    Aellig, MR
    Bochsler, P
    RECENT INSIGHTS INTO THE PHYSICS OF THE SUN AND HELIOSPHERE: HIGHLIGHTS FROM SOHO AND OTHER SPACE MISSIONS, 2001, (203): : 562 - 564
  • [9] Picoflare jets power the solar wind emerging from a coronal hole on the Sun
    Chitta, L. P.
    Zhukov, A. N.
    Berghmans, D.
    Peter, H.
    Parenti, S.
    Mandal, S.
    Aznar Cuadrado, R.
    Schuehle, U.
    Teriaca, L.
    Auchere, F.
    Barczynski, K.
    Buchlin, E.
    Harra, L.
    Kraaikamp, E.
    Long, D. M.
    Rodriguez, L.
    Schwanitz, C.
    Smith, P. J.
    Verbeeck, C.
    Seaton, D. B.
    SCIENCE, 2023, 381 (6660) : 867 - 872
  • [10] An equatorial coronal hole at solar minimum
    Bromage, BJI
    Del Zanna, G
    DeForest, C
    Thompson, B
    Clegg, JR
    CORONA AND SOLAR WIND NEAR MINIMUM ACTIVITY - FIFTH SOHO WORKSHOP, 1997, 404 : 241 - 244