Groups satisfying the maximal condition on non-pronormal subgroups

被引:0
|
作者
Vincenzi, G [1 ]
机构
[1] Univ Salerno, Dipartimento Ingn Informat & Matemat Applicata, I-84100 Salerno, Italy
关键词
pronormal subgroup; maximal condition;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the (generalized) soluble groups for which the set of non-pronormal subgroups verifies the maximal condition are classified.
引用
收藏
页码:121 / 134
页数:14
相关论文
共 50 条
  • [41] The existence of pronormal π-Hall subgroups in E π-groups
    Vdovin, E. P.
    Revin, D. O.
    SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (03) : 379 - 383
  • [42] Groups with many pronormal and transitively normal subgroups
    Semko, N. N.
    ALGEBRA & DISCRETE MATHEMATICS, 2013, 15 (02): : 269 - 286
  • [43] ON REGULAR PRONORMAL SUBGROUPS OF SYMMETRIC-GROUPS
    PALFY, PP
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1979, 34 (3-4): : 287 - 292
  • [44] Finite groups with some weakly pronormal subgroups
    Liu, Jianjun
    Jiang, Mengling
    Chen, Guiyun
    OPEN MATHEMATICS, 2020, 18 : 1742 - 1747
  • [45] A new type of pronormal subgroups in Chevalley groups
    Wang, DY
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2001, 22 (02) : 243 - 248
  • [46] Locally finite simple groups whose non-Abelian subgroups are pronormal
    Brescia, Mattia
    Trombetti, Marco
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (08) : 3346 - 3353
  • [47] Groups with many pronormal and transitively normal subgroups
    Kurdachenko, L. A.
    Semko, N. N., Jr.
    Subbotin, I. Ya.
    ALGEBRA & DISCRETE MATHEMATICS, 2012, 14 (01): : 84 - 106
  • [48] The existence of pronormal π-Hall subgroups in Eπ-groups
    E. P. Vdovin
    D. O. Revin
    Siberian Mathematical Journal, 2015, 56 : 379 - 383
  • [49] PRONORMAL SUBGROUPS AND HOMOMORPHS IN FINITE-GROUPS
    FORSTER, P
    ISRAEL JOURNAL OF MATHEMATICS, 1986, 55 (01) : 94 - 108
  • [50] The influence of weakly pronormal subgroups on the supersolvability of finite groups
    Asaad, M.
    ACTA MATHEMATICA HUNGARICA, 2023, 170 (02) : 655 - 660