Shifted Jacobi-Gauss-collocation with convergence analysis for fractional integro-differential equations

被引:48
|
作者
Doha, E. H. [1 ]
Abdelkawy, M. A. [2 ,3 ]
Amin, A. Z. M. [3 ]
Lopes, Antonio M. [4 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
[2] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Dept Math & Stat, Coll Sci, Riyadh, Saudi Arabia
[3] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
[4] Univ Porto, Fac Engn, UISPA LAETA INEGI, Porto, Portugal
关键词
Fractional integro-differential equation; Spectral collocation method; Jacobi-Gauss quadrature; Riemann-Liouville derivative; NUMERICAL-SOLUTION; DIFFUSION EQUATION; ORDER; TRANSPORT; MATRIX;
D O I
10.1016/j.cnsns.2019.01.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new shifted Jacobi-Gauss-collocation (SJ-G-C) algorithm is presented for solving numerically several classes of fractional integro-differential equations (FI-DEs), namely Volterra, Fredholm and systems of Volterra FI-DEs, subject to initial and nonlocal boundary conditions. The new SJ-G-C method is also extended for calculating the solution of mixed Volterra-Fredholm FI-DEs. The shifted Jacobi-Gauss points are adopted for collocation nodes and the FI-DEs are reduced to systems of algebraic equations. Error analysis is performed and several numerical examples are given for illustrating the advantages of the new algorithm. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:342 / 359
页数:18
相关论文
共 50 条
  • [41] Dynamical Analysis of Fractional Integro-Differential Equations
    Hassan, Taher S.
    Odinaev, Ismoil
    Shah, Rasool
    Weera, Wajaree
    MATHEMATICS, 2022, 10 (12)
  • [42] Application of the collocation method for solving nonlinear fractional integro-differential equations
    Eslahchi, M. R.
    Dehghan, Mehdi
    Parvizi, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 257 : 105 - 128
  • [43] Galerkin and Collocation Methods for Weakly Singular Fractional Integro-differential Equations
    Shiva Sharma
    Rajesh K. Pandey
    Kamlesh Kumar
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 1649 - 1656
  • [44] ERROR ANALYSIS OF FRACTIONAL COLLOCATION METHODS FOR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS WITH NONCOMPACT OPERATORS
    Ma, Zheng
    Huang, Chengming
    Alikhanov, Anatoly A.
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2025, 43 (03): : 690 - 707
  • [45] Numerical schemes with convergence for generalized fractional integro-differential equations
    Kumar, Kamlesh
    Pandey, Rajesh K.
    Sultana, Farheen
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 388
  • [46] ON CONVERGENCE OF HOMOTOPY ANALYSIS METHOD AND ITS APPLICATION TO FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
    Abbasbandy, S.
    Hashemi, M. S.
    Hashim, I.
    QUAESTIONES MATHEMATICAE, 2013, 36 (01) : 93 - 105
  • [47] Numerical solution of nonlinear fractional delay integro-differential equations with convergence analysis
    Peykrayegan, N.
    Ghovatmand, M.
    Noori Skandari, M. H.
    Shateyi, S.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [48] Strong convergence analysis for Volterra integro-differential equations with fractional Brownian motions
    Yang, Zhanwen
    Yang, Huizi
    Yao, Zichen
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 383
  • [49] Shifted Fractional-Order Jacobi Collocation Method for Solving Variable-Order Fractional Integro-Differential Equation with Weakly Singular Kernel
    Abdelkawy, Mohamed A.
    Amin, Ahmed Z. M.
    Lopes, Antonio M.
    Hashim, Ishak
    Babatin, Mohammed M.
    FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [50] Convergence Analysis of the Legendre Spectral Collocation Methods for Second Order Volterra Integro-Differential Equations
    Wei, Yunxia
    Chen, Yanping
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2011, 4 (03) : 419 - 438